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We study the following problem raised by von zur Gathen and Roche [6]:7

What is the minimal degree of a nonconstant polynomial f : {0, . . . ,n}→{0, . . . ,m}?8

Clearly, when m= n the function f(x) = x has degree 1. We prove that when m= n−19

(i.e. the point {n} is not in the range), it must be the case that deg(f) =n−o(n). This10

shows an interesting threshold phenomenon. In fact, the same bound on the degree holds11

even when the image of the polynomial is any (strict) subset of {0, . . . ,n}. Going back to12

the case m= n, as we noted the function f(x) = x is possible, however, we show that if13

one excludes all degree 1 polynomials then it must be the case that deg(f) = n− o(n).14

Moreover, the same conclusion holds even if m=O(n1.475−ε). In other words, there are no15

polynomials of intermediate degrees that map {0, . . . ,n} to {0, . . . ,m}.16

Furthermore, we give a meaningful answer when m is a large polynomial, or even17

exponential, in n. Roughly, we show that if m<
(
n/c
d

)
, for some constant c, and d≤2n/15,18

then either deg(f)≤ d−1 (e.g., f(x) =
(
x−n/2
d−1

)
is possible) or deg(f)≥ n/3−O(d logn).19

So, again, no polynomial of intermediate degree exists for such m. We achieve this result20

by studying a discrete version of the problem of giving a lower bound on the minimal L∞21

norm that a monic polynomial of degree d obtains on the interval [−1,1].22

We complement these results by showing that for every integer k=O(
√
n) there exists23

a polynomial f : {0, . . . ,n}→{0, . . . ,O(2k)} of degree n/3−O(k)≤deg(f)≤n−k.24

Our proofs use a variety of techniques that we believe will find other applications as25

well. One technique shows how to handle a certain set of diophantine equations by working26

modulo a well chosen set of primes (i.e., a Boolean cube of primes). Another technique27

shows how to use lattice theory and Minkowski’s theorem to prove the existence of a28

polynomial with a somewhat not too high and not too low degree, for example of degree29

n−Ω(logn) for m=n−1.30
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1. Introduction31

In this paper we study the following problem that was raised by von zur32

Gathen and Roche [6].33

What is the minimal degree of a nonconstant polynomial34

f : {0, . . . , n} → {0, . . . ,m}?

As f is defined over n+ 1 points, its degree is at most n, so the question35

basically asks whether the degree can be much smaller than n. The answer36

must of course depend on the choice of m. For example, when m = n we37

have the polynomial f(x)=x whereas when m=1 the degree of f is at least38

n−n0.525 [6]. Von zur Gathen and Roche observed an obvious lower bound39

on the degree of nonconstant polynomials f : {0, . . . ,n} → {0, . . . ,m}, that40

follows from the pigeonhole principle, namely, deg(f)≥(n+1)/(m+1). They41

also noted that their techniques for the case m = 1 cannot yield bounds42

better than n−Ω(n) for larger values of m. Thus, prior to this work no43

lower bounds of the form n−o(n) were known on the degree of polynomials44

f : {0, . . . ,n}→ {0, . . . ,m}, when m> 1. We note that von zur Gathen and45

Roche were mainly interested in the case that m is independent of n, but46

the problem is also relevant when m = n− 1 and in fact even for m ≥ n.47

In such cases, one should omit other ‘trivial’ examples besides the constant48

functions. The reason that a meaningful answer can be obtained is that49

the requirement that f takes values in the domain {0, . . . ,m} restricts the50

freedom that the coefficients of f a priori had and puts a severe limitation51

on their structure. In this paper we focus on the case of large m, although52

our results clearly hold for small values of m as well.53

The goal to better understand the degree of polynomials is well motivated54

by the important role that polynomials (both multivariate and univariate)55

play in theoretical computer science. For example, polynomials are promi-56

nent in areas such as circuit complexity [16,19,2], learning theory [12,15],57

decision tree complexity and quantum query complexity [3], Fourier anal-58

ysis of Boolean functions [11,18], explicit constructions (see e.g., [8]) and59

more. Understanding the complexity of univariate polynomials is one of the60

most important problems in algebraic complexity as it is closely related to61

the question of hardness of integer factorization (see e.g., Section B.3 in [7]).62

The degree of polynomials is probably the most simple and natural com-63

plexity measure that is associated with them. Indeed, a basic question in64

the study of polynomials that attracted a lot of interest concerns the min-65

imal degree that a polynomial, belonging to some predetermined family of66

polynomials, can have. This fundamental question was studied before in the67



THE DEGREE OF UNIVARIATE POLYNOMIALS OVER THE INTEGERS 3

context of multivariate real polynomial approximation of Boolean functions68

(see the survey [3]), in the study of representations of symmetric Boolean69

functions as univariate polynomials [6] (where the problem that we study70

here was raised) and in relation to learning symmetric juntas [15,11,18]. In71

[18] it was showed that in order to better understand the Fourier spectrum of72

symmetric functions one needs to study polynomials f : {0, . . . ,n}→{0,1,2}73

and prove lower bounds on their degree, which is exactly the question that74

we study here for the case m=2.75

Besides its connection to complexity theory, the question of understand-76

ing univariate polynomials is important from an approximation theory point77

of view. A different angle to look at our problem is asking, for a given degree d78

how small can the range of a degree d polynomial mapping {0, . . . ,n} to N be.79

This question is a discrete version of a fundamental question in approxima-80

tion theory concerning the minimal L∞ norm of monic polynomials1 over the81

real interval [−1,1]. That is, the question is what is minf maxx∈[−1,1] |f(x)|,82

where f ranges over all monic polynomials of degree d. It is well known83

that Chebyshev polynomials are the only extremal example. The problem84

that we study in this paper basically asks for the minimum L∞ norm that a85

monic polynomial of degree d attains at the points In={−1,−1+ 2
n , . . . ,1},86

namely, minf maxx∈In |f(x)|, where f ranges over all monic polynomials of87

degree d. There is a significant difference from the original question as we88

allow the polynomial to take arbitrarily high values on other points in the89

interval. While for d <
√
n one can get a good estimate using the classical90

theory of Chebyshev polynomials, this is not the case for larger values of d.91

We discuss this connection in more detail in Section 5.1.92

1.1. Our results93

We prove two main results concerning the degree of polynomials mapping94

integers to integers. Both results present a dichotomy behavior. That is,95

given a function f : {0, . . . ,n}→ {0, . . . ,m}, either deg(f) is very small (we96

consider those cases as ‘trivial’) or deg(f) is very high. The first result gives97

a strong lower bound when m is not too large (but still larger than n).98

Theorem 1.1. For every ε > 0 there exists nε such that for every n > nε99

and f : {0,1, . . . ,n}→ {0,1, . . . ,n1.475−ε}, either deg(f)≤ 1 or deg(f)≥ n−100

4n/ log logn.101

As an immediate corollary we get that if a polynomial tries to “compress”102

the domain even by one value, then it must have a nearly full degree.103

1 A polynomial is monic if its leading coefficient is 1.
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Corollary 1.2. Let S ( {0, . . . ,n} and f : {0, . . . ,n}→ S be a nonconstant104

polynomial. Then, deg(f)≥n−4n/ log logn.105

Note that such a strong result cannot hold for m≥n as, for example, the106

function f(x)=x maps {0, . . . ,n} to itself. Our second main result concerns107

larger values of m at the price of a slightly weaker dichotomy.108

Theorem 1.3. There exists a constant n0 such that if d,n are integers109

satisfying d≤ 2
15n and n > n0, then the following holds. If f : {0, . . . ,n}→110 {

0, . . . ,
⌊

1√
7d
·
(
n−d
2d

)d⌋}
is a polynomial, then deg(f) ≤ d− 1 or deg(f) ≥111

1
3n−1.2555 ·

(
d ln(n−d2d )− 1

2 ln(nd )
)
.112

In other words, besides the (“trivial”) case where deg(f)≤d−1, the only113

other option is that f has a relatively high degree.114

The proof of Theorem 1.3 relies on the following theorem that gives a115

lower bound on the maximum value that any monic polynomial must obtain116

on the points {0, . . . ,n}.117

Theorem 1.4. Let f : R → R be a degree d monic polynomial. Then,

maxi=0,1,...,n |f(i)|>
(
n−d
2e

)d
. In particular, if f : Z→Z is a degree d polyno-

mial (not necessarily monic), then

max
i=0,1,...,n

|f(i)| > 1

d!
·
(
n− d

2e

)d
≥ 1√

7d
·
(
n− d

2d

)d
.

As mentioned before, this question is a discrete analog of a question118

from approximation theory asking for the minimal L∞ norm of a monic119

polynomial of degree d over the real interval [−1,1].120

Our next result gives an upper bound on the degree when the range is of121

size at most exp(O(
√
n)).122

Theorem 1.5. For every large enough integer n > 0 and an integer k =123

O(
√
n) there exists f : {0, . . . ,n} → {0, . . . ,O(2k)} of degree 2k < deg(f) ≤124

n−k.125

In particular, by Theorem 1.3, it holds that n/3− k ≤ deg(f) ≤ n− k.126

We note that in [6] von zur Gathen and Roche conjectured that any such127

nonconstant polynomial to {0,1} must be of degree n−O(1). While this128

conjecture is still open, Theorem 1.5 shows that one can get polynomials129

of lower degree when the range is larger, even after excluding the obvious130

examples.131

Finally, we consider polynomials f : {0, . . . ,n}→{0,1}, where n= p2−1132

and p is a prime number. We are able to show that in this case deg(f)≥133

p2−p>n−
√
n. This improves the result of [6] for this special case.134
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Lower Bounds on Degree

Ref. Range of f “Trivial” case Excluding “Trivial” case

[6] {0,1} f is constant deg(f)=n
when n=p−1, p is prime

[6] {0,1} f is constant deg(f)≥n−n0.525

Thm. 1.6 {0,1} f is constant deg(f)≥n−
√
n

when n=p2−1, p is prime

Cor. 1.2 S({0, . . . ,n} f is constant deg(f)≥n−4n/ log logn

Thm. 1.1
{

0,1, . . . ,n1.475−ε} deg(f)≤1 deg(f)≥n−4n/ log logn

Cor. 5.7
{

0, . . . ,
⌊
n2−4Γ (n)2

8

⌋}
deg(f)≤1 deg(f)≥n/2−2n/ log logn

Thm. 5.6
{

0,1, . . . ,n2.475−ε} deg(f)≤2 deg(f)≥n/2−2n/ log logn

Thm. 1.3
{

0, . . . ,
⌊

1√
7d
·
(
n−d
2d

)d⌋}
d≤ 2

15
n

deg(f)≤d−1 deg(f)≥ 1
3
n−1.2555 ·[

d ln
(
n−d
2d

)
− 1

2
ln
(
n
d

)]
Upper Bounds on Degree

Ex. 5.2

{
0, . . . ,

(n+d−1
2
d

)
≈
(
e(n+d)

2d

)d}
f=

(x−n−d+1
2

d

)
Thm. 1.5

{
0, . . . ,O

(
2k
)}

k=O(
√
n)

deg(f)≤
O( k

logn
)

deg(f)≤n−k
(and n/3−O(k)≤deg(f))

Table 1. Summary of Results

Theorem 1.6. Let p be a prime number, n=p2−1 and f : {0, . . . ,n}→{0,1}135

be nonconstant. Then deg(f)≥p2−p>n−
√
n.136

We summarize our results in Table 1.137

1.2. Related work138

The most relevant result is the aforementioned work of von zur Gathen and139

Roche [6] that raised and studied the question of bounding (from below) the140

minimal degree that a real polynomial representing a nonconstant symmetric141

Boolean function can have. As any symmetric function f : {0,1}n→{0,1}142

is actually a function of the number of ones in x, it can be represented143

by a unique polynomial f : {0, . . . ,n} → {0,1} (we abuse notations here144

and think of f both as a univariate polynomial and as a symmetric func-145

tion). Thus, von zur Gathen and Roche basically studied the question of146

giving a lower bound on the minimal degree of nonconstant polynomials147

f : {0, . . . ,n}→ {0,1}. They showed that when n= p− 1, p prime, it must148

be the case that deg(f) =n (when f is not constant). Using the density of149
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prime numbers (see Theorem 2.6) they concluded that deg(f)≥n−o(n) for150

every n (in the notations of Theorem 2.6, deg(f)≥n−Γ (n)). For the case of151

polynomials taking values in {0, . . . ,m}, von zur Gathen and Roche observed152

that deg(f)≥ (n+ 1)/(m+ 1) and mentioned that their techniques cannot153

give any result of the form deg(f)=n−o(n). However, they suggested that154

“...for each m there is a constant Cm such that deg(f)≥n−Cm for all n.” In155

particular, when m=O(1), this amounts to having deg(f)≥n−O(1). This156

conjecture is still open, even for the case m=1.157

Another line of work concerning symmetric Boolean functions

f : {0, 1}n → {0, 1},

has focused on bounding from above the minimal size of a nonempty set S158

such that f̂(S) 6= 0, where f̂(S) is the Fourier coefficient of f at S. We do159

not want to delve into the definition of the Fourier transform, so we only160

mention that when f is balanced, i.e. takes the values 0 and 1 equally often,161

this is the same as bounding from below the degree of f⊕PARITY, see [11]162

for details. As symmetric Boolean functions can be represented by univariate163

polynomials from {0, . . . ,n} to {0,1}, this problem is closely related to the164

questions studied here.165

A motivation for studying the case m>1 was given in [18] where it was166

shown that bounding from below the degree of univariate polynomials to167

{0,1,2}, will give an upper bound on the size of such a set S (for which168

f̂(S) 6=0), even when f is not balanced. Thus, an advance in understanding169

the degree of polynomials mapping integers to integers, that obtain more170

than two values, may shed new light on a well studied problem concerning171

the Fourier spectrum of symmetric Boolean functions.172

1.3. Techniques173

The proofs of Theorems 1.1, 1.4 and 1.5 use a completely different set of174

techniques. In the proof of Theorem 1.1 we rely on solving systems of dio-175

phantine equations by working modulo a well chosen set of primes. The proof176

of Theorem 1.4 is more elementary and follows from some averaging argu-177

ment. For the proof of Theorem 1.5 we use lattice theory and Minkowski’s178

theorem to prove the existence of a polynomial with the required properties.179

We shall now extend more on each of the proofs.180

We give a very rough sketch of the idea of the proof of Theorem 1.1. Our181

goal is to show that every nonlinear polynomial f : {0, . . . ,n}→{0, . . . ,m},182

for m∼n1.475, must have high degree. As the coefficients of f are determined183

by the set of values {f(0),f(1), . . . ,f(n)} if deg(f)≤n, and in fact are linear184
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combinations of them, a natural approach is to look at these dependencies185

and prove that one of the coefficients of high degree monomials cannot be186

zero. Specifically, representing f in the basis of the Newton polynomials (see187

Definition 2.2) we get an explicit and nice formula for each coefficient. If188

f is not of high degree, many of those coefficients vanish and this gives a189

set of linear equations that the values {f(0),f(1), . . . ,f(n)} must satisfy. In190

fact, we manage to get many linear equations from every zero coefficient.191

The idea is that if the degree of f is smaller than a prime number p, then192

the values f(r) and f(r+p) must be strongly correlated for r∈{0, . . . ,n−p}.193

Using such correlations for many different primes, we obtain a set of special194

linear equations (which we call linear recurrence relations) on the values of195

f . A similar approach was taken in [11] (and arguably also in [6]) where the196

authors used different primes to obtain information for the case m=1.197

It is not clear, however, how to exploit the information from the different198

primes. We manage to do so by considering prime numbers that form a ‘nice’199

and ‘rigid’ structure that we call a cube of primes. An r-dimensional cube200

of primes is a set P =Pp;δ1,...,δr⊆{1, . . . ,n} of the form201

P =

{
p+

r∑
i=1

aiδi | a1, . . . , ar ∈ {0, 1}

}
,

such that all the elements of P are prime numbers. The idea is that we202

can partition P , in many different ways, to pairs of primes such that the203

differences, between the primes in each pair, are the same. This enables us204

to combine the different linear recurrences obtained from each prime in a205

way that reveals more information on the values that f takes.206

Theorem 1.3 is an immediate corollary of Theorem 1.4 whose proof goes207

along completely different lines than the proof of Theorem 1.1. The idea is208

to observe that since f has at most d roots in the interval {0, . . . ,n}, some209

point in that interval is relatively far from all roots of f . This immediately210

implies that f obtains a large value at this point.211

To prove Theorem 1.5 we note that polynomials of degree at most D=212

n−k evaluated on 0,1, . . . ,n form a lattice. Since we are interested in the213

polynomials that have small coordinates, our problem corresponds to finding214

a short vector in a lattice with respect to the L∞ norm. Using Minkowski’s215

theorem, we can prove the existence of a non-trivial polynomial (i.e. of a216

not too low and not too high degree) with a small L∞ norm.217
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1.4. Organization218

The paper is organized as follows. In Section 2 we give the basic defini-219

tions and discuss mathematical tools that we shall later use. In Section 3 we220

demonstrate our general technique by considering the case of 2-dimensional221

cube of primes. In Section 4 we prove Theorem 1.1 and conclude Corol-222

lary 1.2. In Section 5 we prove Theorems 1.3 and 1.4 and discuss their223

tightness. We then present the connection to Chebyshev polynomials in Sec-224

tion 5.1 and conclude Theorem 5.5 that improves Theorem 1.4 for d≤
√
n/2.225

We prove Theorem 1.5 in Section 6. Finally, in section 7 we consider the case226

m=1 and n=p2−1 for a prime p. We note that the results in Sections 4, 5227

and 6 are independent of each other so it is not required to read the paper228

in a linear order.229

2. Preliminaries230

For two integers a,b we denote with [a,b] the set of all integers between a231

and b. Namely, [a,b] , {c ∈ Z | a≤ c≤ b}= {a,a+ 1, . . . , b}. We also denote232

[m] , [1,m]. We sometimes abuse notation and speak of the real interval233

[a,b] (in this case [a,b] = {a≤ x≤ b | x ∈ R}). We will always mention the234

words ‘real interval’ whenever we speak of the real interval.235

For a prime number p and integers a,b we denote a≡p b when a and b are236

equal modulo p. For a polynomial f(x)=
∑n

i=0aix
i we denote with spar(f)237

the number of monomials in f , i.e. the number of nonzero ai’s. We denote238

the family of all polynomials from [0,n] to [0,m] by Fm(n). Namely,239

Fm(n) = {f ∈ Q[x] | deg(f) ≤ n, f : [0, n]→ [0,m]}.

Throughout the paper we avoid the use of floor and ceiling in order not to240

make the equations even more cumbersome. This does not affect our results241

and only makes the reading easier.242

We denote by log(·) and ln(·) the logarithms to the base 2 and to the243

base e (that is, the natural logarithm) respectively.244

In the next subsections we present some well known technical tools that245

we require for our proofs.246

2.1. Stirling’s formula247

We shall make use of the well known Stirling approximation for the factorial248

function.249
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Theorem 2.1 (Stirling’s formula). For every natural number n ∈ N it
holds that

n! =
√

2πn ·
(n
e

)n
· eλn

with
1

12n+ 1
< λn <

1

12n
.

A proof of this theorem can be found, e.g., in [17] (see also pages 50-53250

of [5]).251

2.2. Newton basis252

Definition 2.2. For every k∈N, define the polynomial
(
x
k

)
as follows253 (

x

k

)
=
x(x− 1) · · · (x− k + 1)

k!
.

The set of polynomials
{(

x
k

)
: k∈N

}
is called the Newton basis.254

It is easy to see that
{(

x
k

)
: k=0,1, . . . ,d

}
forms a basis of the vector space255

of polynomials of degree at most d. An interesting property of the Newton256

basis is given in the next theorem (see e.g., problem 36 in [10]).257

Theorem 2.3. Let f ∈Q[x] be a polynomial of degree ≤n. Then f can be258

represented as259

f(x) =
n∑
d=0

γd ·
(
x

d

)
where γd =

d∑
j=0

(−1)d−j ·
(
d

j

)
· f(j).

As noted in [6], Theorem 2.3 implies that a polynomial f is of degree260

smaller than d iff for all d≤s≤n it holds that261

s∑
j=0

(−1)j
(
s

j

)
f(j) = (−1)sγs = 0.

As an immediate corollary we get the following useful lemma.262

Lemma 2.4. Let f : [0,n]→ Z be such that deg(f) < d. Then for all r ∈263

[0,n−d] we have that264

d∑
j=0

(
d

j

)
· (−1)j · f(j + r) = 0.
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Proof. For r ∈ [0,n−d] set gr(x) = f(x+ r). We think of gr as a function
gr : [0,n−r]→Z. As deg(gr)=deg(f)<d, and d≤n−r Theorem 2.3 implies
that

d∑
j=0

(−1)j
(
d

j

)
f(j + r) =

d∑
j=0

(−1)j
(
d

j

)
gr(j) = 0.

265

2.3. Lucas’ theorem266

The following theorem of Lucas [13] allows one to compute a binomial coef-267

ficient modulo a prime number.268

Theorem 2.5 (Lucas’ theorem). Let a,b∈N\{0} and let p be a prime
number. Denote with

a = a0 + a1p+ a2p
2 + · · ·+ akp

k,

b = b0 + b1p+ b2p
2 + · · ·+ bkp

k,

their base p expansion. Then269 (
a

b

)
≡p

k∏
i=0

(
ai
bi

)
,

where
(
ai
bi

)
=0 if ai<bi.270

2.4. The gap between consecutive primes271

Denote with pn the n-th prime number. Understanding the asymptotic be-272

havior of pn+1 − pn is a long standing open question in number theory.273

Cramér conjectured that pn+1−pn=O((logpn)2) and, assuming the correct-274

ness of Riemann hypothesis, he proved that pn+1− pn =O(
√
pn logpn) [4].275

The strongest unconditional result is due to Baker et al. [1].2 Denote with276

π(n) the number of primes numbers less than or equal to n.277

Theorem 2.6 ([1]). For any large enough integer n and any y≥n0.525 we278

have that279

π(n)− π(n− y) ≥ 9

100
· y

log n
.

2 The main theorem of [1] only claims that there exists a prime number in the interval
[n−n0.525,n], however they actually prove the stronger claim that is stated here.
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For convenience, we denote280

Γ (n) , n0.525.

We will usually apply the theorem above to claim, for some integer n, that281

there exists a prime number p∈ [n−Γ (n),n].282

2.5. Linear recurrence relations283

Definition 2.7. Let Φ(t) =
∑s

i=0αit
i be a polynomial with rational284

coefficients.3 For f ∈Q[x] we define the action of Φ on f as285

(Φ ◦ f)(x) ,
s∑
i=0

αi · f(x+ i).

When we consider Φ as an operator acting on other polynomials, we call Φ286

a linear recurrence polynomial.287

From now on we will always denote linear recurrence polynomials with288

capital Greek letters: Φ,Ψ,Υ . Following is a list of properties of linear recur-289

rence polynomials.290

Lemma 2.8. For polynomials f,g and linear recurrences Φ,Φ′ the following291

claims hold.292

1. Φ◦f ∈Q[x].293

2. deg(Φ◦f)≤deg(f).294

3. (Φ+Φ′)◦f=Φ◦f+Φ′ ◦f .295

4. Φ◦(f+g)=Φ◦f+Φ◦g.296

5. (Φ ·Φ′)◦f=Φ◦(Φ′ ◦f).297

Proof. Properties 1-4 follow trivially from the definition. Property 5 fol-
lows by a simple calculation. Denote, w.l.o.g., Φ(t) =

∑d
i=0αix

i and Φ′(t) =∑e
j=0βjx

j . We have that

(
Φ · Φ′

)
◦ f(x) =

 d∑
i=0

e∑
j=0

αiβjx
i+j

 ◦ f(x)

=
d∑
i=0

e∑
j=0

αiβjf(x+ i+ j)

3 There is nothing special about Q and the only reason that we use it is that in our
proofs we encounter rational coefficients.
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=
d∑
i=0

αi

 e∑
j=0

βjf (x+ i+ j)


︸ ︷︷ ︸

(Φ′◦f)(x+i)

=
(
Φ ◦ (Φ′ ◦ f)

)
(x).

While property 2 of Lemma 2.8 states the obvious fact that applying a298

linear recurrence cannot increase the degree, the following lemma assures299

that the degree can decrease by (roughly) at most the number of monomials300

in the linear recurrence polynomial.301

Lemma 2.9. Let f ∈ Q[x] be a nonconstant polynomial and let Φ(t) =302 ∑s
i=1αi · tdi be some linear recurrence, Φ 6= 0. Then, for g = Φ ◦ f we have303

that304

deg(f) ≤

{
s− 2 g ≡ 0

s+ deg(g)− 1 otherwise.

Proof. As Φ 6= 0 we can assume w.l.o.g. that the exponents d1, . . . ,ds are
distinct (indeed if they are not distinct then we can rewrite Φ as a polynomial
with s′<s monomials and obtain stronger results). Similarly, if deg(f)≤s−2
then we are done. So, we may assume w.l.o.g. that deg(f) ≥ s− 1. Let

f(x)=
∑D

`=0 bix
i, where bD 6=0. Let L be a (D+1)×(D+1) lower triangular

matrix whose (i, j) entry (for i, j=0, . . . ,D) is Li,j,bD+j−i ·
(
D+j−i

j

)
(where

bD+j−i=0 if j>i). This is clearly a lower triangular matrix with a nonzero

diagonal. Let V be a (D+1)×s Vandermonde matrix defined by Vi,j,(dj)
i for

i=0, . . . ,D and j=1, . . . ,s. It is now easy to verify that the coefficients of the
polynomial g=Φ◦f are the result of the matrix-vector multiplication L·V ·~α
where ~α=(α1, . . . ,αs). Namely, if g(x)=

∑D
i=0 cix

i, then (cD, . . . , c0)=L·V ·~α.
Thus cD−r=(L ·V ·~α)r. Indeed,

(Φ ◦ f)(x) =
s∑
i=1

αif(x+ di) =
s∑
i=1

αi

D∑
j=0

bj(x+ di)
j

=
s∑
i=1

αi

D∑
j=0

bj

j∑
k=0

(
j

k

)
dj−ki xk

=

D∑
k=0

xk
D∑
j=k

bj

(
j

k

) s∑
i=1

αid
j−k
i

=
D∑
k=0

xk
D−k∑
`=0

b`+k

(
`+ k

k

) s∑
i=1

αid
`
i .
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Hence, the coefficient of xD−r is

r∑
`=0

b`+D−r

(
`+D − r
D − r

) s∑
i=1

αid
`
i =

r∑
`=0

Lr,`(V · ~α)` =

D∑
`=0

Lr,`(V · ~α)` = (L · V · ~α)r.

As the first s rows (recall that D+1=deg(f)+1≥s) of L·V form an invertible305

matrix (as a product of a Vandermonde matrix with a lower triangular306

matrix that has a nonzero diagonal), we see that the top s coefficients of g307

are zero iff ~α= 0 (which is a contradiction to the assumption that Φ 6= 0).308

Hence, the degree of g is at least D−s+1=deg(f)−s+1.309

3. Warm up310

In this section we prove some preliminary results that give good intuition to311

the proofs of Theorem 1.1 (and also to the proof of Theorem 5.6). Similarly312

to other works that studied the degree of polynomials mapping integers313

to integers [6,11], we shall consider properties of the polynomial modulo314

different prime numbers.315

As a first step we show that if f ∈ Fn−1(n) is of low degree then it is316

actually a constant function. The proof of the lemma already contains some317

of the ingredients that we will later use in a more sophisticated manner.318

Lemma 3.1. Let f ∈Fn−1(n) be such that deg(f)<n/6−Γ (n), then f is319

a constant.320

Proof. Let p∈ [n/2,n/2+Γ (n)] be a prime number, guaranteed to exist by321

Theorem 2.6. Since deg(f)<p, Lemma 2.4 implies that for all r∈ [0,n/2−322

Γ (n)]⊆ [0,n−p] we have that323

0 =

p∑
k=0

(−1)k
(
p

k

)
f(k + r) ≡p f(r)− f(p+ r).

In particular, if we define g by g(r) = f(r)−f(p+r)
p , then we have that324

g : [0,n/2−Γ (n)]→ [−1,1] (indeed, f(r)−f(p+r)∈ [−n+1,n−1]). Clearly,325

g+1∈F2(n). Note that if g is not constant then its degree must be at least326

(n/2−Γ (n))/3 as one of the values in its range is obtained at least that327

many times. Since in this case n/6−Γ (n)< deg(g)≤ deg(f) we get a con-328

tradiction. Therefore, g must be constant. However, in this case we get by329

Lemma 2.9 that deg(f) ≤ deg(g) + 2− 1 = 1. Indeed, for Φ(t) = 1
p −

1
p t
p, it330
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holds that g=Φ◦f . Hence, deg(f)≤1. Since the range of f is smaller than331

its domain (and f takes integer values), f must be constant.332

Clearly, for m ≥ n, we cannot expect such a strong behavior (that is,333

degree 0 as opposed to degree Ω(n)). However, the following lemma, which334

relies on Lemma 3.1, shows that a slightly weaker dichotomy behavior ex-335

ists for m which is roughly quadratic in n. We later strengthen this result336

(Corollary 5.7).337

Lemma 3.2. Let m< n2−4Γ (n)2
8 be an integer and f ∈Fm(n) be such that338

deg(f)<n/12−Γ (n), then deg(f)≤1.339

Proof. Let p ∈ [n2 − Γ (n), n2 ] be a prime number, guaranteed to exist by340

Theorem 2.6. As before, Lemma 2.4 implies that for all r∈ [0,n−p] we have341

that342

0 =

p∑
k=0

(−1)k
(
p

k

)
f(k + r) ≡p f(r)− f(p+ r).

In particular, if we define g by g(r)= f(r)−f(p+r)
p , then we have that g : [0,n−343

p]→ [−m/p,m/p]. Clearly, g+ m
p ∈F 2m

p
(n−p), and344

2
m

p
<

(n2 − Γ (n))(n2 + Γ (n))

p
≤ n− p.

Hence, g+ m
p is actually in Fn−p−1(n−p), and345

deg(g +
m

p
) ≤ deg(f) ≤ n

12
− Γ (n) ≤ n− p

6
− Γ (n− p).

Now we can apply Lemma 3.1 to conclude that g+ m
p is constant. From346

Lemma 2.9 it follows that deg(f)≤1 which completes the proof.347

We note that the choice m< n2−4Γ (n)2
8 is very close to being tight. Indeed,348

assume that n is odd and consider the function f : [0,n]→ [0, n
2−1
8 ] defined349

as f(x)=
(x−n−1

2
2

)
.350

An important ingredient in the proof of Theorem 1.1 is the use of prime351

numbers that form a structure analogous to a cube. To illustrate our ap-352

proach, consider four prime numbers of the form p<p+δ1<p+δ2<p+δ1+δ2.353

Using Theorem 2.6 one can show that such primes exist and that we can even354

choose them so that they all lie in an interval of the form [n/3−o(n),n/3].355

Lemma 3.3. Let n be a large enough integer. Then, there exist four prime356

numbers357

n

3
− Γ (n) ≤ p < p+ δ1 < p+ δ2 < p+ δ1 + δ2 ≤

n

3
.



THE DEGREE OF UNIVARIATE POLYNOMIALS OVER THE INTEGERS 15

Proof. The lemma follows from the more general Lemma 4.1 that is proved358

in Section 4.1, however, for clarity we prove this special case here.359

Theorem 2.6 guarantees that for a large enough n there are at least4360

Γ (n)/12log(n) prime numbers in the interval [n/3− Γ (n),n/3]. Consider361

all possible differences between two primes in this set. There are at least,362

say, 1
3(Γ (n)/12log(n))2 such differences. As all the differences are smaller363

than Γ (n) it follows that one of the differences is obtained for at least364

1
3
(Γ (n)/12log(n))2

Γ (n) ≥ Γ (n)

500log2(n)
many pairs of primes. Denote the i-th pair365

with (pi,1,pi,2) where pi,1 < pi,2. Consider any two distinct pairs in the366

set, (p1,1,p1,2) and (p2,1,p2,2). Denote δ1 = p1,2 − p1,1 = p2,2 − p2,1 and367

δ2 = |p1,1 − p2,1| > 0. We have that 0 < δ1 + δ2 < Γ (n). In particular,368

{p1,1, . . . ,p2,2} is the required cube.5369

As a warmup for our main result and to demonstrate our proof technique370

we shall prove here the following easier theorem.371

Theorem 3.4. If f ∈Fm(n), where m<n/7, is nonconstant then deg(f)≥372

2n/3−2Γ (n).373

Although the theorem is much weaker than Theorem 1.1, its proof demon-374

strates our general technique and, hopefully, will make the proof of Theo-375

rem 1.1 easier to follow.376

Proof. Let p,δ1, δ2 be as guaranteed in Lemma 3.3. Assume for a contra-377

diction that f ∈ Fm(n) is such that deg(f)< 2n/3− 2Γ (n)≤ 2p. Consider378

the identity guaranteed by Lemma 2.4 modulo each of the four primes. For379

example, taking d=2p (in the notations of Lemma 2.4), we get that for all380

r=0, . . . ,n−2p381

0 =

2p∑
k=0

(−1)k
(

2p

k

)
f(k + r) ≡p f(r)− 2f(p+ r) + f(2p+ r). (1)

Since |f(r)−2f(p+r)+f(2p+r)|<2n/7<p, Equation (1) is actually satisfied
over the integers. Namely, f(r)−2f(p+r)+f(2p+r)=0. In the same manner
we get, for all r∈ [0,n−2(p+δ1+δ2)]

f0,0(r) , f(r)− 2f(p+ r) + f(2p+ r) = 0, (2)

f1,0(r) , f(r)− 2f(p+ δ1 + r) + f(2p+ 2δ1 + r) = 0,

f0,1(r) , f(r)− 2f(p+ δ2 + r) + f(2p+ 2δ2 + r) = 0,

4 There is nothing special about 12, it is just a large enough constant.
5 We can of course make sure that p2,1 6=p1,2, and hence δ1 6=δ2, by ‘throwing’ away one

pair.
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f1,1(r) , f(r)− 2f(p+ δ1 + δ2 + r) + f(2p+ 2δ1 + 2δ2 + r) = 0.

We now show how to combine these equations in a way that will give infor-
mation not only for small values of r (i.e. r≤n−2(p+δ1+δ2)) but also for
larger values of r. By considering the following linear combinations of the
equalities f0,0, . . . ,f1,1 we get that for r∈ [0,n−2(p+δ2+2δ1)] it holds that

0 = f0,0(r + 2δ1)− f1,0(r) = f(r + 2δ1)− f(r)− 2f(p+ r + 2δ1)

+ 2f(p+ r + δ1),

0 = f0,1(r + 2δ1)− f1,1(r) = f(r + 2δ1)− f(r)− 2f(p+ r + 2δ1 + δ2)

+ 2f(p+ r + δ1 + δ2).

Therefore,

0 = (f0,0(r + 2δ1 + δ2)− f1,0(r + δ2))− (f0,1(r + 2δ1)− f1,1(r))
= f(r + 2δ1 + δ2)− f(r + δ2)− f(r + 2δ1) + f(r).

Similarly,

0 = −1

2
· ((f0,0(r + 2δ1)− f1,0(r))− (f0,1(r + 2δ1)− f1,1(r)))

= f(p+ r + 2δ1)− f(p+ r + δ1)− f(p+ r + 2δ1 + δ2)

+ f(p+ r + δ1 + δ2)

and

0 = f0,0(r + δ1)− f1,0(r)− f0,1(r + δ1) + f1,1(r)

= f(2p+ r + δ1)− f(2p+ r + 2δ1)− f(2p+ r + δ1 + 2δ2)

+ f(2p+ r + 2δ1 + 2δ2).

We thus get the following equations for every 0≤r≤n−2(p+δ1+δ2):

0 = f(r + 2δ1 + δ2)− f(r + δ2)− f(r + 2δ1) + f(r) (3)

0 = f(p+ r + 2δ1)− f(p+ r + δ1)− f(p+ r + 2δ1 + δ2)

+ f(p+ r + δ1 + δ2) (4)

0 = f(2p+ r + δ1)− f(2p+ r + 2δ1)− f(2p+ r + δ1 + 2δ2)

+ f(2p+ r + 2δ1 + 2δ2). (5)

These equations give linear recurrence relations on the values of f on the
intervals [0,n−2p], [p,n−p] and [2p,n]. Indeed, Equations (4) and (5) are
equivalent to

0 = f(r + 2δ1)− f(r + δ1)− f(r + 2δ1 + δ2) + f(r + δ1 + δ2) (6)
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0 = f(r + δ1)− f(r + 2δ1)− f(r + δ1 + 2δ2) + f(r + 2δ1 + 2δ2) (7)

for r∈ [p,n−p−2(δ1+δ2)] and r∈ [2p,n−2(δ1+δ2)], respectively. Let

Φ(t) = (t2δ1+δ2 − tδ2 − t2δ1 + 1)·
(t2δ1 − tδ1 − t2δ1+δ2 + tδ1+δ2)·
(tδ1 − t2δ1 − tδ1+2δ2 + t2δ1+2δ2). (8)

It follows that (Φ◦f)(r)=0 for all382

r ∈ [0, n− 2p− 6(δ1 + δ2)] ∪ [p, n− p− 6(δ1 + δ2)] ∪ [2p, n− 6(δ1 + δ2)]

(see Property 5 in Lemma 2.8).6 We have two cases:383

• The three ranges are distinct. In this case, Φ◦f has at least 3 ·(n−2p−384

6(δ1+δ2))≥n−18(δ1+δ2) many roots.385

• The three ranges overlap. In this case, Φ ◦ f has at least n− 6(δ1 + δ2)386

many roots.387

Either way, Φ◦f has at least n−18(δ1+δ2) many roots. We conclude that either388

Φ◦f≡0 or deg(Φ◦f)≥n−18(δ1+δ2). As deg(Φ◦f)≤deg(f)< 2
3n<n−18(δ1+δ2)389

it must be the case that Φ ◦ f ≡ 0. Hence, by Lemma 2.9 it follows that390

deg(f)=O(1). However, at this point we can apply Lemma 3.1 and conclude391

that f is constant.392

In the general case, we will not be able to deduce that in (the analogous393

equation to) Equation (2) the sum is equal to 0, but rather we will only394

bound it from above. Furthermore, we will work with 2Ω(log logn) many prime395

numbers that form a structure of an Ω(log logn)-dimensional cube (in the396

sense that {p,p+δ1,p+δ2,p+δ1+δ2} is a 2-dimensional cube). This will make397

the construction of the relevant Φ more complicated, but the high level ideas398

will be similar.399

4. Proof of Theorem 1400

In this section we prove Theorem 1.1. We begin by giving a proof overview.401

Let f : [n]→ [m], where m=n1.475−ε, such that deg(f)≤n− 4n
log logn . We402

shall find a linear recurrence Υ with the following two properties:7403

6 The change in the range of r occurs since we want all the evaluations points of Φ◦f
to be inside the interval [0,n].

7 Previous techniques take Υ (t) := tp−1
p

for p ∈ [deg(f),n] as the recurrence, which is
range reducing, but not of low-degree. We shall combine information from several primes
to establish this goal.
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1. Low Degree. Υ is of degree ≤nε+o(1) and of sparsity no(1).404

2. Range Reducing. The polynomial g=Υ◦f maps [n′]→ [−m′,m′] where405

n′=n−O(nε+o(1)) and m′≤ m
n1−ε−o(1) ≤

√
n.406

By applying the linear recurrence on again, this time on g, we get a407

polynomial h=Υ ◦g that maps [n′′]→ [−m′′,m′′], where n′′=n−O(nε+o(1))408

and m′′= m′

n1−ε−o(1) <1, i.e. h has as least n′′ roots. By Lemma 2.8, deg(h)≤409

deg(g) ≤ deg(f) < n′′, and we get that h ≡ 0. Using Lemma 2.9, we get410

that deg(g) ≤ spar(Υ )− 2 and by applying the lemma again we get that411

deg(f)≤ spar(Υ )+deg(g)−1≤2 · spar(Υ )−3<2 ·deg(Υ ) which means that412

f is of much lower degree than we were promised initially. This allows us to413

apply Lemma 3.2 and conclude that deg(f)≤1.414

Proof of Theorem 1.1. For convenience, set µ = log log(n)/2 and m =415

n1.475−ε. Let f ∈Fm(n) be a function such that416

deg(f) < n ·
(

1− 2

µ

)
= n− 4n

log log n
.

As was demonstrated in Section 3, we will consider the behavior of f417

modulo various prime numbers that form a high dimensional cube of primes.418

The existence (and properties) of this structure is guaranteed by the next419

lemma.420

Lemma 4.1. Let 0<ε<1/2, there exists n0(ε) such that for any n>n0(ε)
and µ=log log(n)/2, there exists a set

Pp;δ0,δ1,δ2,...,δµ =

{
p+

µ∑
i=0

ai · δi | ∀i ai ∈ {0, 1}

}

⊆
[

n

µ+ 1
− 4Γ (n),

n

µ+ 1
− Γ (n)

]
with the following properties:421

1. Every q∈Pp;δ0,δ1,δ2,...,δµ is a prime number.422

2. δi>0 for all i=1, . . . ,µ.423

3. ∆,
∑µ

i=1 δi≤nε.424

4. δ0∈ [Γ (n),3Γ (n)].425

We defer the proof of the lemma to Section 4.1 and continue with the426

proof of Theorem 1.1. We shall consider two subcubes of Pp;δ0,δ1,δ2,...,δµ . De-427

note B,Pp;δ1,δ2,...,δµ and B0,Pp+δ0;δ1,δ2,...,δµ . Note that in both B,B0 we do428
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not consider shifts by δ0. Let q∈Pp;δ0,δ1,δ2,...,δµ =B∪B0 be a prime number.429

From the construction of Pp;δ0,δ1,δ2,...,δµ it follows that (for a large enough n)430

deg(f) < n ·
(

1− 2

µ

)
<

n

µ+ 2
· µ < qµ. (9)

Combining Lemma 2.4 and Lucas’ theorem (Theorem 2.5) we get that for431

every r∈ [0,n−qµ] it holds that432

0 =

qµ∑
j=0

(
qµ

j

)
· (−1)j · f(j + r) ≡q

µ∑
j=0

(
µ

j

)
· (−1)j · f(qj + r). (10)

Notice that this equality is analogous to Equation (1) from the proof of433

Theorem 3.4. Since f ∈Fm(n) we can rewrite Equation (10) as434

µ∑
j=0

(
µ

j

)
· (−1)j · f(qj + r) = Kq,r(f) · q, (11)

where Kq,r(f) is an integer satisfying:

|Kq,r(f)| < 2µ ·m
q

<
2µ ·m

n/(µ+ 2)
=
m

n
· 2µ · (µ+ 2)

<
m

n
· 22µ = n0.475−ε · 22µ. (12)

Thus, instead of summing to 0 as was the case in Equation (2), we get that435

the sum equals a relatively small (i.e., at most log(n) ·n0.475−ε) multiple of436

q. In the language of linear recurrence, when applying the linear recurrence437

Ψq(t) =

µ∑
j=0

(
µ

j

)
· (−1)j · tqj (13)

to f we get438

(Ψq ◦ f)(r) = Kq,r(f) · q (14)

for every r ∈ [0,n− qµ]. We now combine all the different Ψq’s to obtain439

a linear recurrence in an analogous way to the way that we combined the440

different equalities in (2) to create the linear recurrences given by (3),(4)441

and (5). Let p̃ be either p or p+ δ0. We will cancel out all the monomials442

of the linear recurrence except those whose exponents lie in a small range:443

[p̃k, p̃k+µ∆] (recall that ∆ =
∑µ

i=1 δi ≤ nε). Consider the following linear444

recurrence for k∈ [0,µ]445

Φ′p̃,k(t) =
∑

~a∈{0,1}µ
(−1)

∑µ
i=1 ai · Ψ(p̃+∑µ

i=1 ai·δi)(t)

· t
∑k
i=1 (1−ai)·(i−1)·δi+

∑µ
i=k+1 (1−ai)·i·δi .

(15)
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The reason for this complicated looking expression will become clear soon446

when we show that this linear recurrence give information about f(r) for447

r ∈ [p̃k, p̃k+n−µ(p̃+∆)]. The following claim shows that indeed Φ′p̃,k has448

the required property. To simplify the statement of the claim let8449

c~a,k,k(i) ,


k if ai = 1

i− 1 if ai = 0 and i ≤ k
i if ai = 0 and i ≥ k + 1.

(16)

Claim 4.2.

Φ′p̃,k(t) = tkp̃ · (−1)k ·
(
µ

k

)
·
∑

~a∈{0,1}µ
(−1)

∑µ
i=1 ai · t

∑µ
i=1 c~a,k,k(i)·δi .

To ease the reading we postpone the proof of the claim to Section 4.2 and450

proceed with the proof of Theorem 1.1. Claim 4.2 has two interesting conse-451

quences. The first is that p̃ only appears in the term tkp̃. The second is that452

Φ′p̃,k is actually divisible by tkp̃. In particular if we set453

Φp̃,k(t) , Φ′p̃,k(t)/t
kp̃ (17)

then we get that Φp̃,k gives a recurrence relation for every r ∈ p̃k+ [0,n−454

µ(p̃+∆)]=[p̃k, p̃k+n−µ(p̃+∆)]. This is similar to the way that we obtained455

Equations (6),(7) from Equations (3),(4) and (5). Furthermore, since we456

factored out the term tkp̃, it follows that457

Φp,k = Φp+δ0,k. (18)

We now wish to better understand the value of Φp̃,k◦f . Equations (14),(15)458

and (17) imply that one can write (Φp̃,k ◦f)(r) as459

(Φp̃,k ◦ f)(r) =
∑

~a∈{0,1}µ
(−1)

∑µ
i=1 ai ·K(p̃+

∑µ
i=1 ai·δi),r′~a

(f) · (p̃+

µ∑
i=1

ai · δi), (19)

where460

r′~a , r − kp̃+

k∑
i=1

(1− ai) · (i− 1) · δi +

µ∑
i=k+1

(1− ai) · i · δi.9

8 In the proof of Claim 4.2 we use the more general notation c~a,j,k(i).
9 Notice that r′~a ∈ [0, n− µ(p̃+

∑µ
i=1 ai · δi)].
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Rewriting (19) gives461

(Φp̃,k ◦ f)(r) = Lp̃,r(f) · p̃+

µ∑
i=1

Mp̃,i,r(f) · δi, (20)

where462

Lp̃,r(f) ,
∑

~a∈{0,1}µ
(−1)

∑µ
i=1 ai ·K(p̃+

∑µ
i=1 ai·δi),r′~a

(f) (21)

and463

Mp̃,j,r(f) ,
∑

~a∈{0,1}µ:aj=1

(−1)
∑µ
i=1 ai ·K(p̃+

∑µ
i=1 ai·δi),r′~a

(f). (22)

From the bound in Equation (12) it follows that464

|Lp̃,r(f)| < 23µ · n0.475−ε and |Mp̃,i,r(f)| < 23µ−1 · n0.475−ε. (23)

The following claim shows that we actually have Lp,r(f) = Lp+δ0,r(f) = 0,465

so, in fact,466

(Φp̃,k ◦ f)(r) =

µ∑
i=1

Mp̃,i,r(f) · δi. (24)

Therefore,467

|(Φp̃,k ◦ f)(r)| ≤ 23µ−1 · n0.475−ε ·∆ ≤ 23µ−1 · n0.475. (25)

Claim 4.3. Lp,r(f)=Lp+δ0,r(f)=0.468

We defer the proof of the claim to Section 4.2 and proceed with the proof
of the theorem. The good thing about Equation (25) is that it will allow us
to reduce to the case of a polynomial with a bounded range. This somewhat
resembles the way that we concluded the proof of Theorem 3.4, although it
is done in a slightly more involved manner. Let

Υ (t) =

µ∏
i=0

Φp,i(t) and Υk(t) =
Υ (t)

Φp,k
.

We now bound the value of469

g(r) , (Υ ◦ f)(r)

for r ∈ [kp,kp+ n− µ(p+∆)− deg(Υk)]. Notice that g(r) = (Υk ◦ (Φp,k ◦
f))(r). Furthermore, Υk(t)=

∏
i 6=kΦp,i(t). Claim 4.2 implies that each Φp,i(t)

contains 2µ monomials 10, and that its coefficients are upper bounded (in

10 Note that here we allow different monomials with the same exponent.
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absolute value) by 2µ. Therefore, since Υk(t) is a product of µ such Φp,i’s, it

follows that Υk(t) is a sum of 2µ
2

monomials with coefficients upper bounded

(in absolute value) by 2µ
2

. Moreover, as a polynomial, the degree of each
Φp,i(t) is at most µ ·∆ (this follows as c~a,k,k≤µ). Hence, the degree of Υk(t)

is at most µ2·∆. Thus, we have that Υk(t)=
∑2µ

2

i=1αi · tdi where 0≤di≤µ2·∆
and |αi|≤2µ

2
. This implies that for every k∈ [0,µ] and every11

r ∈ Ik , [kp, kp+ n− µ(p+∆)− deg(Υk)],

we have that

|g(r)| = |(Υk ◦ (Φp,k ◦ f))(r)| =

∣∣∣∣∣∣
2µ

2∑
i=1

αi · (Φp,k ◦ f)(r + di)

∣∣∣∣∣∣
≤

2µ
2∑

i=1

|αi| · |(Φp,k ◦ f)(r + di)| ≤ 2µ
2 · 2µ2 · 23µ−1 · n0.475 ≤ n0.475+o(1),

(26)

where we also used the bound on |Φp,k◦f | given in (25). Notice that the size
of the interval Ik satisfies

|Ik| = n− µ(p+∆)− deg(Υk) + 1

> n− µ(
n

µ+ 1
− Γ (n))− deg(Υk) + 1 >

n

µ+ 1
> p

and therefore every two consecutive intervals Ik and Ik+1 have a nonzero470

intersection. Hence, we conclude that for every r ∈ [0,n− µ∆− deg(Υµ)]471

(note that n−µ∆−deg(Υµ) is the endpoint of Iµ) it holds, by (26), that472

|g(r)|≤n0.475+o(1)<n0.5. We thus have that473

g : [0, n− µ∆− deg(Υµ)]→ [−n0.5, n0.5]. (27)

In addition we have (by Lemma 2.8) that474

deg(g) ≤ deg(f) < µp. (28)

We now would like to show that deg(g) is much smaller than µp and then475

use Lemma 2.9 and Lemma 3.2 to conclude that f is of degree at most 1.476

Before applying Lemma 2.9, we must ensure that Φp,k(t) 6=0.477

Claim 4.4. For every k∈ [0,µ] it holds that Φp,k(t) 6=0.478

11 The drop by deg(Υk) in the range of relevant r’s is so that r+di will be in the range
[kp,kp+n−µ(p+∆)].
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We defer the proof of Claim 4.4 and continue with the proof of the The-
orem. Assume first that g is not a constant. The point is that now we can
repeat the whole proof for g instead of f , with n′=n−µ∆−deg(Υµ) instead
of n. Note that due to the bound on the range of g we get that Equation (12),
applied to g instead of f , gives

|Kq,r(g)| < 2µ · n0.5

q
<

2µ · n0.5

n/(µ+ 2)
< 1.

Thus Kq,r(g) = 0. Continuing, we see that (Φp̃,k ◦g)(r) = 0 for r ∈
[p̃k, p̃k+n′−µ(p̃+∆)]. Therefore, if we define h=Υ◦g then for every k∈ [0,µ]

and r∈ I ′k, [kp,kp+n′−µ(p+∆)−deg(Υk)] we have that h(r) = 0. As be-
fore, we see that any two consecutive intervals I ′k and I ′k+1 have a nonzero
intersection. Indeed

|I ′k| = n′ − µ(p+∆)− deg(Υk) + 1

= n− µp− 2µ∆− deg(Υk)− deg(Υµ) + 1

>(∗) n− µ(
n

µ+ 1
− Γ (n))− 2(µ∆+ µ2∆)

>
n

µ+ 1
> p,

where inequality (∗) follows from the properties of the construction in479

Lemma 4.1. It therefore follows that h(r) is zero for all r ∈ [0,n′− µ∆−480

deg(Υµ)]. Since481

deg(h) ≤ deg(g) ≤ deg(f) < (µ+ 1)p < n′ − µ∆− deg(Υµ),

we get that h≡0. By Lemma 2.9,482

deg(g) ≤ spar(Υ )− 2.

Applying Lemma 2.9 again yields that12483

deg(f) ≤ deg(g)+spar(Υ )−1 ≤ 2 · spar(Υ )−3 ≤ 2µ
2+µ+1−3 = o(n). (29)

Lemma 3.2 now implies that f is of degree at most 1. This completes the484

proof of the theorem (the omitted proofs are given in Sections 4.1 and 4.2).485

Corollary 1.2 follows immediately from Theorem 1.1. Indeed, as S is486

contained in and not equal to the domain [0,n], any function with degree at487

most 1 is in fact a constant function.488

12 If g≡0 then one needs to replace deg(g) by −1 in (29).
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4.1. A cube of primes489

We shall now prove Lemma 4.1. As in the proof of Lemma 3.3, the proof of490

Lemma 4.1 is by the pigeonhole principle and relies on Theorem 2.6.491

Proof of Lemma 4.1. The high level idea is the same as in the proof of492

Lemma 3.3. However, since we are looking for µ-dimensional ‘cubes’ it will493

be convenient to first prove the following combinatorial lemma. Note that494

the lemma does not necessarily concern prime numbers.495

Lemma 4.5. Let A⊆ [a1,a2] and let496

` = a2 − a1, α = |A|/`.

Then, if r≤ log log(`)− log log( 4
α), there is an r-dimensional ‘cube’ which is497

a subset of A498

Px;δ1,...,δr ,

{
x+

r∑
i=1

ai · δi | ∀i ai ∈ {0, 1}

}
⊆ A,

where δi>0 for i=1,2, . . . , r.499

Note that we do not require that the δi’s are distinct.500

Proof. We shall prove, by induction on r that for every r ∈ [0, log log(`)−501

log log( 4
α)], there exist δ1, . . . , δr such that there are at least `·α2r

42r−1 r-502

dimensional cubes Px;δ1,...,δr (with different x’s) inside A.503

The case r=0: This case is trivial as there are exactly ` ·α= |A| elements504

in A, each is a 0-dimensional ‘cube’.505

The induction step: Assume that we already proved the claim for r and we506

wish to prove it for r+1. Consider the smallest number in each r-dimensional507

cube that was found in the r-th step. By the induction hypothesis we have508

`·α2r

42r−1 such different numbers, all of which in A⊆ [a1,a2]. Looking at all the509

differences between those numbers, we get that if `·α2r

42r−1 ≥2 then there are at510

least
(
`·α2

r

42
r−1

2

)
≥ 1

4

(
`·α2r

42r−1

)2
many such differences, all between 1 and `. Using511

the pigeonhole principle, we conclude that there is a ‘popular’ difference,512

δr+1, with at least 1
` ·

1
4 ·
(
`·α2r

42r−1

)2
many occurrences. For such a ‘popular’513

difference δr+1 and every pair of cubes at distance δr+1 we have that514

Px;δ1,δ2,...,δr ∪ Px+δr+1;δ1,δ2,...,δr = Px;δ1,δ2,...,δr,δr+1 .
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This gives the required

1

4`
·
(
` · α2r

42r−1

)2

=
` · α2r+1

42r+1−1

(r+1)-dimensional cubes.515

To conclude the proof of Lemma 4.5 we need to show that for r ≤516

log log(`)− log log( 4
α), it holds that `·α2r

42r−1 ≥ 2, which is equivalent to show-517

ing that ` ≥ 2 · 42r−1 · ( 1
α)2

r
. It is clearly enough to show that ` ≥ ( 4

α)2
r
,518

which follows since r≤ log log(`)−log log( 4
α). This completes the proof of the519

lemma.520

We now proceed with the proof of Lemma 4.1. Recall that we have to521

find δ0 that will be much larger than the other δi’s (in fact, it has to be522

much larger than their sum, as we consider ε which is relatively small). We523

therefore start by first choosing δ0 and only then apply Lemma 4.5.524

Let p,q be prime numbers such that:

q ∈ Iq ,
[

n

µ+ 1
− 2Γ (n),

n

µ+ 1
− Γ (n)

]
,

p ∈ Ip ,
[

n

µ+ 1
− 4Γ (n),

n

µ+ 1
− 3Γ (n)

]
.

Clearly, |Ip|= |Iq|= Γ (n) and Γ (n)≤ q− p≤ 3Γ (n) for any such p and q.525

Theorem 2.6 implies that each of the intervals Iq, Ip contains at least 9
100·

Γ (n)
logn526

different prime numbers. By the pigeonhole principle, each of the intervals527

Ip, Iq has a sub-interval of length nε that contains at least 1
12 ·

nε

logn many528

prime numbers. Denote these sub-intervals as I ′p, I
′
q respectively:529

I ′p = [rp, rp + nε] I ′q = [rq, rq + nε].

Looking at all the differences between pairs of primes in I ′q × I ′p we get530

that there are at least ( nε

12·logn)2 many differences, each of which is between531

rq − rp−nε and rq − rp +nε. Hence, one of the differences occurs at least532

( nε

12·logn)2/2nε = nε

2(12·logn)2 many times. Let δ0 be that popular difference.533

Clearly, property 4 holds from this choice of δ0 . Consider the following set534

A ,
{
x ∈ I ′p | x+ δ0 ∈ I ′q, x and x+ δ0 are primes

}
.

Obviously, A⊆ I ′p, and by the choice of δ0 we are guaranteed that |A|≥
nε

2(12·logn)2 . Let α= |A|/|I ′p|≥ 1
2(12·logn)2 . Note that

log log(nε)− log log

(
4

α

)
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≥ log log(n)− log log log(n)− log(1/ε)−O(1) >
log log n

2
= µ.

We now apply Lemma 4.5 with parameters535

` = |I ′p| = nε and α = |A|/|I ′p| ≥
1

2(12 · log n)2

and obtain that there exists an µ-dimensional cube B = Px;δ1,...,δµ ⊆A. By

the definition of A it follows that all the elements in B+δ0,{b+δ0 | b∈B}
are prime numbers. Our final (r+1)-dimensional cube is therefore,

Px;δ0,δ1,...,δµ =

{
x+

µ∑
i=0

ai · δi | ∀i ai ∈ {0, 1}

}
.

We note that Lemma 4.5 also guarantees that all the δi’s are positive and
that

∆ ,
n∑
i=1

δi ≤ |I ′p| = nε.

4.2. Omitted proofs536

We now give the proofs of Claims 4.2, 4.3 and 4.4.537

Proof of Claim 4.2. Recall that538

Φ′p̃,k(t) =
∑

~a∈{0,1}µ
(−1)

∑µ
i=1 ai · Ψ(p̃+∑µ

i=1 ai·δi)(t)

· t
∑k
i=1 (1−ai)·(i−1)·δi+

∑µ
i=k+1 (1−ai)·i·δi .

(30)

Denote

c~a,j,k(i) ,


j if ai = 1

i− 1 if ai = 0 and i ≤ k
i if ai = 0 and i ≥ k + 1

.

This is consistent with the previous definition of c~a,k,k (see Equation (16)).
By expanding Ψ (recall Equation (13)) and using the c~a,j,k’s we get that

Φ′p̃,k(t) =
∑

~a∈{0,1}µ
(−1)

∑µ
i=1 ai ·

µ∑
j=0

(−1)j ·
(
µ

j

)
·
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· tjp̃+
∑µ
i=1 c~a,j,k(i)·δi

Considering the coefficients for different j’s we have the following cases.539

Case 1: j < k. For every ~a = (a1, . . . ,aj ,0,aj+2, . . . ,aµ), let ~b =540

(a1, . . . ,aj ,1,aj+2, . . . ,aµ). It is easy to verify that c~a,j,k = c~b,j,k. As541

(−1)
∑µ
i=1 ai =−(−1)

∑µ
i=1 bi we get that ~a and ~b cancel each other.542

Case 2: j>k. Quite similarly, for every ~a=(a1, . . . ,aj−1,0,aj+1, . . . ,aµ),543

let ~b=(a1, . . . ,aj−1,1,aj+1, . . . ,aµ). Again, ~a and ~b cancel each other.544

Case 3: j=k. This is the only case where coefficients do not get canceled545

out. We therefore get that546

Φ′p̃,k =
∑

~a∈{0,1}µ
(−1)

∑µ
i=1 ai · (−1)k ·

(
µ

k

)
· tkp̃+

∑µ
i=1 c~a,k,k(i)·δi ,

as claimed.547

We now proceed to proving Claim 4.3. The specific properties of the cube548

(that may have seemed somewhat arbitrary) play a major role in this proof.549

Proof of Claim 4.3. Recall that Φp,k=Φp+δ0,k (Equation (18)). Therefore,

Lp,r(f) · p+

µ∑
i=1

Mp,i,r(f) · δi = Φp,k(r) = Φp+δ0,k(r) (31)

= Lp+δ0,r(f) · (p+ δ0) +

µ∑
i=1

Mp+δ0,i,r(f) · δi.

Rearranging (31) gives

(Lp,r(f)− Lp+δ0,r(f)) · p

= Lp+δ0,r(f) · δ0 +

µ∑
i=1

(Mp+δ0,i,r(f)−Mp,i,r(f)) · δi.

Recall that
|Lp,r(f)|, |Lp+δ0,r(f)| < 23µ · n0.475−ε

and
|Mp,i,r(f)|, |Mp+δ0,i,r(f)| < 23µ−1 · n0.475−ε

(Equation (23)). By our choice of parameters we have that∣∣∣∣∣Lp+δ0,r(f) · δ0 +

µ∑
i=1

(Mp+δ0,i,r(f)−Mp,i,r(f)) · δi

∣∣∣∣∣
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≤ 23µ · n0.475−ε · (δ0 +

µ∑
i=1

δi)

= n0.475−ε · Γ (n) · poly log(n) = n1−ε · poly log(n) < p.

As (Lp,r(f)−Lp+δ0,r(f)) ·p is an integer multiple of p, it must be the case550

that Lp,r(f)−Lp+δ0,r(f) = 0. We now show that Lp+δ0,r(f) = 0 which will551

conclude the proof.552

As we just proved that Lp,r(f)−Lp+δ0,r(f)=0 we can rewrite (31) as553

Lp+δ0,r(f) · δ0 = −
µ∑
i=1

(Mp+δ0,i,r(f)−Mp,i,r(f)) · δi.

Similarly to the previous argument we note that Lp+δ0,r(f) ·δ0 is an integer
multiple of δ0 and that, by our choice of parameters (Lemma 4.1)∣∣∣∣∣

µ∑
i=1

(Mp+δ0,i,r(f)−Mp,i,r(f)) · δi

∣∣∣∣∣
< 2 · 23µ−1 · n0.475−ε ·

µ∑
i=1

δi ≤ 23µ · n0.475 < Γ (n) ≤ δ0.

Hence, Lp+δ0,r(f)=0. This completes the proof of the claim.554

Proof of Claim 4.4. By claim 4.2, Φp,k(t) is the sum of 2µ (not necessarily555

different) monomials. To prove that the different monomials do not cancel556

each other we will show that there is a unique monomial of maximal degree.557

Note that for every ~a∈{0,1}µ we have a monomial of degree
∑µ

i=1 c~a,k,k(i) ·δi558

in Φp,k(t). Let559

~a , (1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, 0, . . . , 0︸ ︷︷ ︸
µ−k

).

Then, for every other binary vector ~a 6=~b∈{0,1}µ we have the following: For560

i≤k, c~b,k,k(i)≤k=c~a,k,k(i) and the inequality is strong if bi=0. For i≥k+1,561

c~b,k,k(i)≤ i=c~a,k,k(i) and the inequality is strong if bi=1.562

As ~a 6=~b, it follows that c~b,k,k<c~a,k,k. Namely,

∀i ∈ [1, µ] : c~b,k,k(i) ≤ c~a,k,k(i) and ∃i ∈ [1, µ] : c~b,k,k(i) < c~a,k,k(i).

Since all the δi’s are positive, we get that
∑µ

i=1 c~b,k,k(i) ·δi<
∑µ

i=1 c~a,k,k(i) ·δi,563

and the monomial that corresponds to ~a is the unique monomial of maximal564

degree.565
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5. The range of a degree d polynomial566

In this section we prove Theorem 1.3. It will be an easy corollary of The-567

orem 1.4 which we first prove. The proof is quite elementary and basically568

follows from averaging arguments. At the end of the section we present a569

possible approach for improving our results using the Chebyshev polyno-570

mials, however at this stage we get more general results using our simple571

argument. To ease the reading we repeat the statement of Theorem 1.4.572

Theorem 5.1 (Theorem 1.4). Let f : R→R be a degree d monic polyno-

mial. Then, maxi∈[0,n] |f(i)|>
(
n−d
2e

)d
. In particular, if f : Z→Z is a degree

d polynomial (not necessarily monic) then

max
i∈[0,n]

|f(i)| > 1

d!
·
(
n− d

2e

)d
≥ 1√

7d
·
(
n− d

2d

)d
.

Proof of Theorem 1.4. For d= 1 the theorem holds. So we can assume573

w.l.o.g that d≥2. Consider the factorization of f over C,574

f(x) =
d∏
i=1

(x− αi). (32)

Recall that if αi∈C is a root of f then its conjugate ᾱi is also a root of f .575

As we are interested in bounding the range of f from below, we can assume576

w.l.o.g. that all the roots of f are real. Indeed, for any complex α and real x577

it holds that (x−α)·(x−ᾱ)≥(x−R(α))2, where R(α) is the real part of α.578

We would like to give a lower bound on the maximum (absolute) value579

of f by showing that the product
∏n
i=0 f(i) is large. However, since some of580

the i’s can be roots of f , or very close to roots of f , we need to remove them581

from the product first.582

Call an element i∈ [0,n] an approximate root of f if there is a root of f , αj583

(in the notations of Equation (32)), such that13 round(αj)= i. Clearly, there584

are at most d approximate roots in the set [0,n]. Denote with S⊆ [0,n] the585

set of all i∈ [0,n] such that i is not an approximate root. Clearly |S|≥n+1−d.586

Note that587

max
i∈[0,n]

|f(i)| ≥

[∏
i∈S
|f(i)|

] 1
|S|

. (33)

13 round(x) is the integer closest to x, if x= i+ 1/2 then round(x) = i. In other words,
round(x)=dx−1/2e.
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As588 ∏
i∈S
|f(i)| =

d∏
j=1

∏
i∈S
|i− αj |, (34)

it will suffice for our needs to bound from below the value of each product589 ∏
i∈S |i−αj | and then apply it in Equation 33.590

Fix some j∈ [d]. Notice that the closest element to αj in S has distance
at least 1/2 from it. The next element has distance at least 1 from it. The
next has distance at least 3/2 from it, etc. In other words, if we sort the
elements in S according to their distances from αj , S = {i1, . . . , i|S|}, then
the k element, ik will be at distance at least k/2. Hence,

∏
i∈S
|i− αj | ≥

|S|∏
k=1

|ik − αj | ≥
|S|∏
k=1

k

2
=
|S|!
2|S|

≥∗
(
|S|
2e

)|S|
·
√

2π|S|, (35)

where inequality (∗) follows from Stirling’s formula (Theorem 2.1). Plugging
Equation (35) back to Equations (34) and (33) we get

max
i∈[0,n]

|f(i)| ≥

[( |S|
2e

)|S|
·
√

2π|S|

]d 1
|S|

= (2π|S|)
d

2|S| ·
(
|S|
2e

)d
>

(
n− d

2e

)d
.

This proves the first statement of the theorem. For the second statement
we note that if f is a polynomial mapping integers to integers then by
Theorem 2.3 the coefficient of xd in f is an integer multiple of 1/d!. In
particular there is an integer c 6=0 such that (d!/c)·f(x) is monic. Therefore,

max
i∈[0,n]

|f(i)| =
∣∣∣ c
d!

∣∣∣ · max
i∈[0,n]

∣∣∣∣d!

c
· f(i)

∣∣∣∣ > 1

d!
·
(
n− d

2e

)d
≥ 1√

7d
·
(
n− d

2d

)d
,

where we used Stirling’s formula (and the assumption that d≥2) in the last591

inequality.592

We believe that Theorem 1.4 can be improved. Nevertheless, the next593

example shows that the theorem is not far from being tight.594
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Example 5.2. For an odd integer n and an even integer d≤n, the polyno-595

mial f(x)=
(x−n−d+1

2
d

)
is a degree d polynomial mapping [0,n] to [0, nd

2d·d! ].596

Proof. It is not difficult to see that since d is even, f(x) = f(n− x). In
particular, f(x)≥0 for all x∈ [0,n]. Furthermore, for all r∈ [0,n]

f(r) ≤ f(n) =

(n+d−1
2

d

)
<

1

d!
·
(
n2 − 1

4

)d/2
<

nd

2d · d!
.

This upper bound is larger by a factor of (roughly) ed from the lower597

bound on the range that is stated in Theorem 1.4. It is an interesting question598

to understand the ‘correct’ bound.599

To derive Theorem 1.3 we will need the following easy property of the
function

Dn(x) ,
1√
7x
·
(
n− x

2x

)x
.

Lemma 5.3. In the real interval [1,n] the function Dn(x) is first strictly600

increasing and then strictly decreasing. Furthermore, it attains its maximum601

at some 0.135 ·n<x<0.136 ·n (for n≥450).602

Proof. It is clearly sufficient to prove that the function

ln(Dn(x)) = ln

(
1√
7x
·
(
n− x

2x

)x)
= x ln(n− x)− x lnx− x ln 2− 1

2
lnx− 1

2
ln 7

has the claimed property. This will follow from the observation that the
second derivative of ln(Dn(x)) is negative. Indeed,

(ln(Dn(x)))′ = ln(n− x)− x

n− x
− ln(x)− 1− ln(2)− 1

2x

and

(ln(Dn(x)))′′ = − 1

n− x
− n

(n− x)2
− 1

x
+

1

2x2
< 0

where the last inequality holds since x≥1.603

To see the ‘furthermore’ part we note that (ln(Dn))′(0.135·n)>0 for n≥604

450 and that (ln(Dn))′(0.136·n)<0 for every n. Hence, by the intermediate605

value theorem, (ln(Dn(x)))′ = 0 for some 0.135 · n < x < 0.136 · n (when606

n≥450).607

We denote the unique maximum point of Dn as xDn .608

We can now derive Theorem 1.3.609
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Proof of Theorem 1.3. If deg(f) ≤ d− 1 we are done. We may there-
fore assume that deg(f) ≥ d. If deg(f) ≤ xDn then by Theorem 1.4 and
Lemma 5.3, we get that the maximal value that f attains on [0,n] is larger

than Dn(deg(f)) ≥ Dn(d) > 1√
7d
·
(
n−d
2d

)d
, in contradiction to the assump-

tion of the theorem. Since Dn(x) is decreasing for x > xDn we observe, by
substituting x= 1

3n−1.2555 · [d ln(n−d2d )− 1
2 ln(nd )] into Dn, that

Dn
(

1

3
n− 1.2555 ·

[
d ln

(
n− d

2d

)
− 1

2
ln
(n
d

)])
>

1√
7d
·
(
n− d

2d

)d
.

Indeed, it is not hard to see that for any c such that c<n/3−0.136·n (which
in particular means that xDn<n/3−c) it holds that

Dn(n/3− c) =
1√

7(n/3− c)
·
(
n− (n/3− c)

2n/3− 2c

)n/3−c
=

1√
7(n/3− c)

·
(

1 +
3c/2

n/3− c

)n/3−c
≥(∗) 1√

7n/3
· e0.531·3c/2

=
√

3 · 1√
7d
· e0.7965·c−

1
2
ln(n/d),

where to prove inequality (∗) we used the simple fact that (1+x)≥e0.531·x for610

x≤2.1765, together with the bound on c. In our case, since d≤ 2
15n, it is not611

hard to verify that c,1.2555 · [d ln(n−d2d )+ 1
2 ln(nd )] satisfies c<n/3−0.136 ·n612

(for n large enough) as required.613

We therefore obtain that

Dn
(

1

3
n− 1.2555 ·

[
d ln

(
n− d

2d

)
− 1

2
ln
(n
d

)])
≥
√

3 · 1√
7d
· e0.7965·c−

1
2
ln(n/d)

>
1√
7d
· ed ln(

n−d
2d ) =

1√
7d
·
(
n− d

2d

)d
,

as claimed. By Lemma 5.3, deg(f)≥ 1
3n−1.2555 ·

[
d ln
(
n−d
2d

)
− 1

2 ln
(
n
d

)]
.614

To summarize, Theorem 1.3 uses the fact that Dn has a unique maximum,615

xDn , and aims to find, for a given degree d<xDn , another degree d′>xDn616

such that Dn(d′)≥Dn(d). In the theorem we gave a relatively simple way to617
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derive d′ from d. With more work one can push this result for d’s closer to618

xDn .619

We note that Theorem 1.3 implies that when Ω(n)≤deg(f)<(1−ε)n/3620

then the range of f is exponential in n. As a corollary of Example 5.2 one621

can show that if we allow the range to be as large as O
((

1+
√
5

2

)n)
then f622

can have any degree. Indeed, taking the maximum over
(n+d−1

2
d

)
, when d+n623

is odd, we get an upper bound on that range that is smaller than the n-th624

Fibonacci number, FIBn.625

Lemma 5.4. For integers d,n such that n+ d is odd, let Rn,d ,
(n+d−1

2
d

)
,

and set

Rn , max{Rn,d | d ∈ [0, n], d+ n is odd }.

Then, Rn≤Rn−1+Rn−2 for n>2.626

Proof. Since n> 2, we can assume that the maximum of Rn,d is achieved

for some d > 0. We use the combinatorial identity
(
m
k

)
=
(
m−1
k

)
+
(
m−1
k−1
)

to
conclude that:

Rn,d =

(n+d−1
2

d

)
=

(n+d−1
2 − 1

d

)
+

(n+d−1
2 − 1

d− 1

)
=

( (n−2)+d−1
2

d

)
+

( (n−1)+(d−1)−1
2

d− 1

)
= Rn−2,d +Rn−1,d−1.

Maximizing over d in both sides we conclude that Rn≤Rn−2+Rn−1.627

As an immediate corollary, using the fact that R1 =R2 = 1, we deduce628

that629

Rn ≤ FIBn ≤
1√
5
·

(
1 +
√

5

2

)n
,

which completes our argument.630

5.1. A possible route for improvements631

In this section we present a possible approach towards improving Theo-632

rem 1.3, when d≤
√
n/2, based on Chebyshev polynomials. We will only give633

a sketch of the approach and we will not cover all necessary background on634

Chebyshev polynomials. The interested reader is referred to [14].635



34 GIL COHEN, AMIR SHPILKA, AVISHAY TAL

A natural approach to proving that a polynomial must take large values is
by comparing it to the Chebyshev polynomial of the same degree. Roughly,
the Chebyshev polynomial of degree d is defined on the real interval [−1,1]
in the following way:

Td(x) = cos(d arccos(x)).

It is not hard to prove that Td is a degree d polynomial, having exactly636

d roots in the interval [−1,1], that its leading coefficient is 2d−1 and that637

it has d+ 1 extremal values in the same interval, on which it is equal, in638

absolute value, to 1. Specifically, its roots lie on the points cos(π(2k−1)2d ) and639

its extremal points are cos(πkd ), on which it alternates between 1 and −1.640

A well known fact of the Chebyshev polynomials is that among the degree641

d monic polynomials the polynomial fd(x)=21−dTd(x) whose maximum on642

the real interval [−1,1] is the smallest and equals 21−d.643

The problem in using this fact is that we are interested in the maximum644

of a function on a relatively small set of points. Consider a polynomial645

f : [0,n]→ [0,m]. Let g(x)=f(n2x+
n
2 ). Thus g : [−1,1]→ [0,m], (where [−1,1]646

is the real interval) and we are interested in the value of g on the points647

{−1,−1+ 2
n ,−1+ 4

n , . . . ,1}. Denote for simplicity xk=2k/n−1, k=0, . . . ,n.648

We would like to say that as Td obtains the smallest maximum on [−1,1]649

then (after we normalize g by its leading coefficient) it must obtain a value650

larger than 21−d on one of the xk’s. However, all that we know is that the651

maximum of g on the whole interval [−1,1] is large and not necessarily on652

one of the xk’s.653

To tackle this problem one has to prove that the values that Td obtains654

on the xk’s is relatively large (close to its overall maximum). A possible way655

for proving this is by observing that we can find a point xk near any extremal656

point and then, since we have a reasonable bound on the derivative of Td,657

conclude that Td obtains a relatively large value there as well. This approach658

in fact works; Since the derivative of Td is bounded by d2 it follows that when659

d <
√
n/2 there are d+ 1 points among the xk’s on which Td alternates in660

sign and obtains absolute value larger than, say, 1/2. Now, let g̃ = g/gd,661

where gd is the leading coefficient of g. Assume that |g̃(xk)|< 1
2 · 2

1−d, for662

every k. Then the polynomial 21−dTd− g̃ has degree at most d−1 (it is the663

difference of two degree d monic polynomials) and it changes sign d times664

(between the xk’s on which Td obtains large value), which is a contradiction.665

It therefore follows that maxk∈[0,n] |g(xk)|≥ 1
2 |gd|·2

1−d. As gd equals fd·(n/2)d,666

where fd is the leading coefficient of f , and since |fd| ≥ 1
d! , we get that667

maxk∈[0,n] |f(k)|= maxk∈[0,n] |g(xk)| ≥ 2−d · (n/2)d/d! = nd

22dd!
. We summarize668

this in the next theorem.669
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Theorem 5.5. There exists a constant n0 such that for every two integers670

d,n such that n>n0 and d≤
√
n/2 it holds that if f : Z→Z is a degree d671

polynomial (not necessarily monic) then maxi∈[0,n] |f(i)|≥ nd

22dd!
.672

This result is slightly better than the bound maxi∈[0,n] |f(i)|≥ 1
d! ·
(
n−d
2e

)d
673

that was obtained in the proof of Theorem 1.4, but it holds only for d≤
√
n/2.674

We note, however, that this approach cannot work for d=ω(
√
n) as for such675

large d many roots of Td are very close to each other. Indeed, the distances676

among the first roots (and among the last roots) are smaller than 1/n while677

the xk’s are separated from one another. For that reason we cannot use678

Theorem 5.5 instead of Theorem 1.4; In order to show that the degree must679

be larger thanΩ(n) we must claim something about the range of polynomials680

of degree, say, n/ log(n) and Theorem 5.5 does not give any information in681

this case.682

5.2. The case of small degrees683

In this section we give two small improvements for the case of polynomials684

of degrees 1 or 2. The first improvement concerns polynomials whose range685

is (roughly) [0,n2.475].686

Theorem 5.6. For every 0< ε there exists n0 such that for every integer687

n0<n the following holds: Every688

f : [0, n]→
[
0, n2.475−ε

]
must satisfy deg(f)≤2 or deg(f)≥n/2−2n/ log logn.689

Notice that Theorem 1.3 implies that if the range of f is, say, [0,n3/1000]690

then either deg(f)≤2 or deg(f)≥n/3−O(logn). Thus, the improvement that691

Theorem 5.6 gives is that if the range is [0,n2.475−ε] then either deg(f)≤ 2692

(as before) or it is at least n/2− 2n/ log logn (compared to roughly n/3).693

The proof is quite similar to the proof of Lemma 3.1.694

Proof. We first explain how n0 is defined. A corollary of Theorem 1.1 is695

that there exists n1 such that for every n>n1 and f : [0,n]→ [0,17n1.475−ε],696

either deg(f)≤1 or deg(f)>n−4n/ log logn. Define n2 (guaranteed to exist697

from Theorem 2.6) such that for every n>n2 it holds that there is a prime698

number in the range [n2 −Γ (n), n2 ] and such that Γ (n) =n0.525< n
2 −

n
3 . We699

set n0=max(2n1,n2).700
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The proof is by a reduction to Theorem 1.1. Let p ∈ [n2 −Γ (n), n2 ] be a701

prime number. If deg(f)≥p then we are done, as in this case702

deg(f) ≥ p ≥ n

2
− Γ (n) ≥ n

2
− 2n/ log logn.

Therefore, we may assume that deg(f)<p. By Lemma 2.4, working modulo703

p, we get that f(r) ≡p f(p+ r) for every r ∈ [0,n− p]. As in the proof of704

Lemma 3.1, we consider the polynomial g(r) = f(r)−f(r+p)
p which is defined705

over r∈ [0,n−p]. It follows that706

g : [0, n− p]→
[
−n2.475−ε

p
,
n2.475−ε

p

]
⊆
[
−3 · n1.475−ε, 3 · n1.475−ε

]
.

In particular, g+3 ·n1.475−ε maps [0,n/2] to[
0, 6 · n1.475−ε

]
⊆
[
0, 17(n/2)1.475−ε

]
.

Since n>n0 ≥ 2n1 Theorem 1.1 implies that either deg(g)≤ 1 or deg(g)>707

n/2−2n/ log logn. By Lemma 2.9 we get that deg(f)≤deg(g)+1 and so the708

case deg(g)≤ 1 translates to deg(f)≤ 2. In the second case where deg(g)>709

n/2−2n/ log logn we get the same conclusion for f as deg(g)≤deg(f).710

As an immediate corollary we get our second improvement that provides711

a strengthening of Lemma 3.2.712

Corollary 5.7. There exists a constant n0 such that if n > n0 and713

f : [0,n] →
[
0,
⌊
n2−4Γ (n)2

8

⌋]
is a polynomial then deg(f) ≤ 1 or deg(f) ≥714

n/2−2n/ log logn.715

Proof. Lemma 3.2 implies that if deg(f)>1 then it is at least n/12−Γ (n).716

However, by Theorem 5.6 we get that actually deg(f)≥n/2−2n/ log logn.717

The example given after Lemma 3.2, f(x) =
(x−n−1

2
2

)
, gives a degree 2718

polynomial mapping [0,n] to
[
0, n

2−1
8

]
. Thus, up to an additive O(n1.05)719

term, the range in Corollary 5.7 is tight.720

6. Proof of Theorem 1.5721

In this section we prove Theorem 1.5. The proof is based on a reduction722

to the Shortest Vector Problem (SVP) in Lattice Theory. In section 6.1 we723

introduce basic definitions and tools from lattice theory. We then turn to724

prove Theorem 1.5 in section 6.2.725
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6.1. Basic properties of lattices726

Definition 6.1. Let b1, b2, . . . , bn be linearly independent vectors in Rm (ob-727

viously n≤m). We define the lattice generated by them as728

Λ(b1, b2, . . . , bn) =

{
n∑
i=1

xibi : xi ∈ Z

}
.

We refer to b1, b2, . . . , bn as a basis of the lattice. More compactly, if B is the729

m×n matrix whose columns are b1, b2, . . . , bn, then we define730

Λ(B) = Λ(b1, b2, . . . , bn) = {Bx : x ∈ Zn} .

We say that the rank of the lattice is n and its dimension is m. The lattice731

is called a full-rank lattice if n=m. The determinant of Λ(B) is defined as732

det(Λ(B)) =
√

det(BTB). Although a basis of a lattice is not unique, e.g.,733

both
{

(0,1)T ,(1,0)T
}

and
{

(1,1)T ,(2,1)T
}

span Z2, it can be shown that734

the determinant of a lattice is independent of the choice of basis.735

Definition 6.2. Let K be a bounded and open convex set in Rn, which is736

symmetric around the origin. Let Λ be a lattice of rank n. For i∈ [n], the737

i-th successive minimum with respect to K is defined as738

λi(Λ,K) = inf {r : dim (span (Λ ∩ rK)) > i}

where rK={rx : x∈K}.739

We shall need the following theorem, due to Minkowski. A proof can be740

found in, e.g., [9].741

Theorem 6.3. For any full-rank lattice Λ of rank n,742

n∏
i=1

λi(Λ,K) · vol(K) ≤ 2n detΛ.

We will take K to be the set (−1,1)n. Thus, K has volume 2n, and it743

is clearly a bounded and open convex set, which is symmetric around the744

origin. For this K, Theorem 6.3 gives an upper bound on the length of745

shortest vectors in lattices with respect to the L∞ norm. Note that this is746

slightly unusual, as in most applications one considers the shortest vectors747

with respect to the L2 norm.748
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6.2. Proof of Theorem 1.5749

The idea behind the proof of Theorem 1.5 is roughly as follows. We identify750

each function f : [0,n]→Z with its set of values (f(0),f(1), . . . ,f(n)). That751

is, we think of functions as vectors in Zn+1. We shall construct a lattice in752

Rn+1 which is not full-rank, and contains only points representing polyno-753

mials of degree deg(f)≤n−k. We then prove that this lattice has many (at754

least 2k+2) linearly independent short vectors with L∞-norm smaller than755

O(2k), i.e. many linearly independent polynomials whose image is (some-756

what) bounded. One of these polynomials must be of degree at least 2k+1.757

For technical reasons we will not work with the lattice described above but758

rather we shall consider a full rank lattice obtained by adding ‘long’ orthog-759

onal vectors to the basis of our initial lattice.760

Proof of Theorem 1.5. Set D = n− k and let m = O(2k).14 We now761

describe the basis for the lattice. For i ∈ [0,D] define the vector bi ∈Rn+1
762

as follows: (bi)j =
(
j
i

)
, for j = 0, . . . ,n. Notice that bi corresponds to the763

polynomial fi(x)=
(
x
i

)
. Let bD+1, . . . , bn ∈Rn+1 be arbitrary vectors of length764

M , (m/2+1) ·
√
n+1, such that for every i∈ [D+1,n], bi is orthogonal to765

bk for all k 6= i (we can find such bi by, say, the Gram-Schmidt procedure).766

Denote by B the matrix whose columns are b0, . . . , bn and let Λn,D=Λ(B).767

Lemma 6.4.

det (Λn,D) ≤ 2(n+D+1)(n−D)/2 ·Mn−D.

We defer the proof of the lemma and continue with the proof of The-768

orem 1.5. By a theorem of Minkowski (see Theorem 6.3) and the choice769

K=(−1,1)n+1, we get770

n+1∏
i=1

λi(Λn,D,K) · vol(K) ≤ 2n+1 · detΛn,D. (36)

Note that for i≥D+2, λi(Λn,D,K)≥M/
√
n+1. Indeed, if u is a point in771

Λn,D with a non-zero coefficient for some bi, i≥D+1, then by orthogonality772

and the fact that the length of such bi is M , we have that u has L2 norm773

at least M , and hence its L∞ norm is at least M/
√
n+1. Combining this774

observation with Equation (36), the fact that vol(K)=2n+1 and Lemma 6.4,775

we get776

D+1∏
i=1

λi(Λn,D,K) ≤ 2(n+D+1)(n−D)/2 · (
√
n+ 1)n−D. (37)

14 The exact value of m will be determined later.
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Estimating the LHS from below gives777

D+1∏
i=1

λi(Λn,D,K) ≥
D+1∏

i=2k+2

λi(Λn,D,K) ≥ λ2k+2(Λn,D,K)D−2k. (38)

Combining Equations (37) and (38), we get

λ2k+2(Λn,D,K) ≤ 2
(n+D+1)(n−D)

2(D−2k) · (
√
n+ 1)

n−D
D−2k = 2

(2n−k+1)k
2(n−3k) · (

√
n+ 1)

k
n−3k

= 2k · 2
O

(
k2+k logn
n−3k

)
= O(2k), (39)

where the last step is due to the assumption that k=O(
√
n). In particular,778

for a large enough n there is some constant β such that λ2k+2(Λn,D,K)≤β2k.779

Letting m=2β2k, we get that λ2k+2(Λn,D,K)≤m/2. Hence, by definition of780

λ2k+2, there are 2k+2 linearly independent vectors, in Λn,D whose L∞-norm781

is not greater than m/2, i.e. they all lie in Λn,D∩ [−m/2,m/2]n+1.782

Let v be any such vector. Denote with v =
∑n

i=0αibi its representation783

according to the basis B. Recall that all the coefficients αi are integers.784

As ‖v‖2 ≤ ‖v‖∞ ·
√
n+1 ≤ m/2 ·

√
n+1 < M and since for every j > D,785

‖bj‖2=M , we get, by orthogonality, that αD+1=αD+2= · · ·=αn=0. Hence,786

for `∈ [0,n], the `-th coordinate of v is equal to v`=
∑D

i=0αi
(
`
i

)
. Therefore,787

the polynomial fv(x) =
∑D

i=0αi
(
x
i

)
satisfies fv(`) =v` for every `∈ [0,n]. As788

v∈ [−m/2,m/2]n+1 we get that fv(x) : [0,n]→ [−m/2,m/2] is a polynomial789

of degree at most D.790

To complete the proof we need to show that we can pick v such that791

deg(fv)≥2k+1. Indeed, since there are 2k+2 linearly independent vectors792

in Λn,D ∩ [−m/2,m/2]n+1, we get 2k+ 2 linearly independent polynomials793

fv. Consequently, there must exist v ∈ Λn,D ∩ [−m/2,m/2]n+1 such that794

deg(fv) ≥ 2k+ 1. The polynomial we were looking for is therefore, f(x) =795

fv(x)+m/2.796

This completes the proof of Theorem 1.5.797

Remark 6.5. Note that when k is a constant integer, we get from (39) that798

there is a nonconstant polynomial f : [n]→ [2 ·2k] of degree deg(f)≤n−k,799

for a large enough n (specifically, n≥ c ·k2 ·2k for some global constant c is800

enough). Combining this with Theorem 1.1 we conclude that801

n−O
(

n

log logn

)
≤ deg(f) ≤ n− k.
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Also note that Theorem 1.5 implies that for k=log(n)−O(1) there is a802

nonconstant polynomial f : [n]→ [n−1] of degree 2k≤deg(f)≤n−k. Again,803

combining with Theorem 1.1 we conclude that804

n−O
(

n

log logn

)
≤ deg(f) ≤ n− log(n) +O(1).

Remark 6.6. Even for k ≤ n/10 we would get from (39) that m = 2O(k).805

Combining this with Example 5.2 for k in the range [n/10,n], it follows that806

for any integer 1≤ k≤n there is a nontrivial polynomial of deg(f)≤n−k807

and range bounded by m=2O(k).808

We now prove Lemma 6.4.809

Proof of Lemma 6.4. By the orthogonality of bD+1, . . . , bn

detΛn,D = det (b0, . . . , bn)

= det (b0, . . . , bD) ·
n∏

i=D+1

‖bi‖2

= det (b0, . . . , bD) ·Mn−D,

and so it is enough to show that det(b0, . . . , bD) ≤ 2(n+D+1)(n−D)/2. Let810

Bn,D be the (n+1)× (D+1) matrix with columns b0, . . . bD. By definition,811

det(b0, . . . , bD)=
√

det(BT
n,DBn,D). Using basic rows and columns operations812

on B, one can show that det(BT
n,DBn,D)=det(ATn,DAn,D)·

(∏D
i=0 i!

)−2
, where813

An,D is a (n+1)× (D+1) matrix with entries (An,D)i,j = ij .15 The matrix814

Cn,D,ATn,DAn,D has the form (Cn,D)i,j =
∑n

`=0 `
i+j for 0≤ i, j≤D. In [20],815

the determinant of Cn,D, which is a Vandermondian matrix, was computed.816

Theorem 6.7 ([20] subsection 6.10.4.).817

∆n,D , det(Cn,D) =
∑

0≤k0<k1<···<kD≤n
(V (k0, k1, . . . , kD))2,

where V (k0,k1, . . . ,kD) is the determinant of the usual Vandermonde matrix
with parameters k0,k1, . . . ,kD. That is,

V (k0, k1, . . . , kD) =
∏

0≤i<j≤D
(kj − ki).

15 It is easy to prove this by, say, induction on j.
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To get a more explicit upper bound on the determinant of Cn,D, ∆n,D,818

we prove the following lemma.819

Lemma 6.8. For any integer `>0, ∆D+`,D≤∆D+`−1,D ·4D+`.820

We postpone the proof of Lemma 6.8 and continue with the proof. We note821

that822

∆D,D =

 ∏
0≤i<j≤D

(j − i)

2

=

(
D∏
i=1

i!

)2

,

and so, applying Lemma 6.8 multiple times, we get

∆n,D ≤ ∆n−1,D · 4n ≤ ∆n−2,D · 4n+(n−1) ≤ · · ·
· · · ≤ ∆D,D · 4n+(n−1)+···+(D+1)

=

(
D∏
i=1

i!

)2

· 2(D+n+1)(n−D).

Therefore,

(det (b0, . . . , bD))2 = det (BT
n,DBn,D)

= det(Cn,D) ·

(
D∏
i=1

i!

)−2

= ∆n,D ·

(
D∏
i=1

i!

)−2
≤ 2(D+n+1)(n−D).

Taking the square root of both sides we obtain Lemma 6.4.823

We now prove Lemma 6.8.824

Proof of Lemma 6.8. We shall map each of the sequences 0≤ k0<k1<825

k2< .. .< kD≤D+ ` to a sequence 0≤ k′0<k′1<k′2< .. .< k′D≤D+ `−1 as826

follows:827

1. If kD≤D+`−1, then ∀i∈ [0,D] : k′i=ki.828

2. If 1≤k0, then ∀i∈ [0,D] : k′i=ki−1.829

3. Otherwise, let 0≤ t <D be the first index satisfying kt<kt+1−1. Note
that there is such an index since k0=0, kD=D+` and `>0. We set

k′i :=

{
ki if i ≤ t
ki − 1 otherwise.
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Note that 0≤ k′0 < k′1 < k′2 < .. . < k′D ≤D+ `− 1, and that at most D+ 2830

sequences 0 ≤ k0 < k1 < k2 < .. . < kD ≤ D+ ` were mapped to the same831

sequence 0≤k′0<k′1<k′2<.. .<k′D≤D+`−1. We now wish to give an upper832

bound on833

V (k0, k1, . . . , kD)

V (k′0, k
′
1, . . . , k

′
D)

=

∏
i<j kj − ki∏
i<j k

′
j − k′i

. (40)

In Cases 1,2 Equation (40) equals 1 since the mapping does not affect the
differences between the ki’s. In Case 3 we have

(40) =

∏
i<j kj − ki∏
i<j k

′
j − k′i

=
∏
i<j≤t

kj − ki
k′j − k′i

·
∏
i≤t<j

kj − ki
k′j − k′i

·
∏
t<i<j

kj − ki
k′j − k′i

=
∏
i<j≤t

kj − ki
kj − ki

·
∏
i≤t<j

kj − ki
kj − 1− ki

·
∏
t<i<j

kj − ki
(kj − 1)− (ki − 1)

=
t∏
i=0

D∏
j=t+1

kj − ki
kj − 1− ki

=
t∏
i=0

∏D
j=t+1 kj − ki∏D

j=t+1 kj − 1− ki

=

t∏
i=0

kD − ki
kt+1 − 1− ki

·
∏D−1
j=t+1 kj − ki∏D

j=t+2 kj − 1− ki

≤
t∏
i=0

kD − ki
kt+1 − 1− ki

.

Note, that by definition of t it must be the case that k0 = 0, k1 = 1,. . . ,834

kt= t and kt+2≥ t+2. Therefore,835

t∏
i=0

(kt+1 − 1− ki) ≥
t+1∏
i=1

i,

and836

t∏
i=0

(kD − ki) ≤
t∏
i=0

(D + `− i).

It follows that

(40) ≤
t∏
i=0

kD − ki
kt+1 − 1− ki

≤
∏t
i=0D + `− i∏t+1

i=1 i
=

(
D + `

t+ 1

)
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≤
(

D + `

(D + `)/2

)
<

2D+`√
1.5 · (D + `)

,

where the last inequality follows from Stirling’s approximation for a large
enough D. Hence

∆D+`,D =
∑

0≤k0<k1<···<kD≤D+`

(V (k0, k1, . . . , kD))2

≤
∑

0≤k0<...<kD≤D+`

(
2D+`√

1.5 · (D + `)

)2

· V (k′0, k
′
1, . . . , k

′
D)2

=
4D+`

1.5 · (D + `)
·

∑
0≤k0<...<kD≤D+`

V (k′0, . . . , k
′
D)2

≤(∗) 4D+` · (D + 2)

1.5 · (D + `)
·

∑
0≤k′0<...<k′D≤D+`−1

V (k′0, . . . , k
′
D)2

≤ 4D+` ·∆D+`−1,D,

where inequality (∗) holds as at most D+2 sequences 0≤k0<k1<k2<.. .<837

kD≤D+ ` were mapped to the same sequence 0≤k′0<k′1<k′2<.. .<k′D≤838

D+`−1, as mentioned above. This completes the proof of the lemma.839

7. Back to the Boolean case840

In this section we consider the Boolean case. Specifically, let m = 1 and841

n=p2−1 for some prime p. We prove that in this case the degree must be842

at least n−
√
n. For completeness, we also give a proof for the case n=p−1,843

that was previously proved in [6].844

Proof of Theorem 1.6. Let f be as in the statement of the theorem and845

assume that deg(f)<p2−p. By Lemma 2.4 we get that for all r∈ [0,p−1]846

p2−p∑
k=0

(−1)k
(
p2 − p
k

)
f(k + r) = 0. (41)

Since p2−p=(p−1)·p+0, it follows, by Lucas’ theorem, that if k=k1·p+k0, is the

base p representation of k, then
(
p2−p
k

)
≡p 0 when k0 6=0 and

(
p2−p
k

)
≡p (−1)k1

when k0=0. Therefore, (41) is equivalent to

0 =

p2−p∑
k=0

(−1)k
(
p2 − p
k

)
f(k + r) ≡p

p−1∑
k1=0

f(k1p+ r).
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Note that the RHS contains exactly p summands. As they are all in {0,1}847

they must all be equal in order for their sum to be 0 modulo p. We thus get848

that for every r ∈ [0,p− 1], f(r) = f(p+ r) = . . .= f((p− 1)p+ r). In other849

words, if we set g(x),f(x+p)−f(x) then g(x)=0 for x∈ [0,p2−p−1].850

If g is identically zero, then Lemma 2.9 implies that deg(f)=0, i.e., that851

f is constant, as claimed. Otherwise, since g has p2− p zeroes, it follows852

that deg(g) ≥ p2− p. This is a contradiction as deg(f) ≥ deg(g) (in fact,853

deg(f)=deg(g)+1).854

For completeness we also prove the following result of [6].855

Theorem 7.1 ([6]). Let p be a prime number, n=p−1 and f : [0,n]→{0,1}856

be nonconstant. Then deg(f)=p−1=n.857

Proof. Assume that deg(f)<n. As in the proof of Theorem 1.6, we apply
Lemma 2.4 and Lucas’ theorem to obtain

0 =

p−1∑
k=0

(−1)k
(
p− 1

k

)
f(k + r) ≡p

p−1∑
k=0

f(k).

Again, it must be the case that f(0)=f(1)= . . .=f(p−1), i.e., f is constant.858

8. Discussion859

We proved that it is ‘hard’ for polynomials to ‘compress’ the interval [0,n].860

Namely, that any such nonconstant polynomial to a strict subset of [0,n]861

must have degree n−o(n). We also proved that if we allow m= 1
d! ·
(
n−d
2e

)d
862

then f can of course have degree < d, but all other polynomials mapping863

[0,n] to [0,m] must have degree ≥ n/3− o(n). We are not able to prove864

however that our results are tight. In particular we believe that they can be865

improved both for the case m<n and for the case of large m. We note that866

the following question, posed by von zur Gathen and Roche, is still open: “...867

for each m there is a constant Cm such that deg(f)≥n−Cm”. Furthermore,868

when m=1 they raise the possibility that C1=3. As an intermediate goal it869

will be interesting to manage to break the n−Γ (n) upper bound. Specifically,870

show that when f ∈ F1(n) is nonconstant, deg(f)≥ n−
√
n. It seems that871

new techniques are required in order to prove this claim as all current proofs872

are based on modular calculations and we cannot guarantee the existence873

of a prime p in the range [n−
√
n,n]. For the special case that n=p2−1 we874

managed to obtain such a result, and of course when n= p− 1 a stronger875

result is known, but the general case is still open.876
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Another intriguing question is to understand what is the minimal range877

that a polynomial mapping integers to integers of degree exactly d can have.878

We note that in Example 5.2 the degree is d and the range is (roughly)879

of size 1
d! ·
(
n
2

)d
. Theorem 1.3 asserts that if the degree is d then the range880

must be larger than (roughly) 1
d! ·
(
n−d
2e

)d
(Theorem 5.5 actually improves it881

to 1
d! ·
(
n
4

)d
for d ≤

√
n/2). It is an interesting question to understand the882

‘correct’ bound.883

Finally, we think that it will be interesting to find examples that are884

significantly better than those obtained in Theorem 1.5 and Example 5.2.885
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