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Abstract

We will upper bound the size of admissible set with a given width. This gives dually a lower
bound for the minimal width of an admissible set given the set size.

1 Preliminaries

Definition 1.1. Denote by Md the maximal number of admissible numbers in an interval of length
d (i.e., [x, x + d− 1] for some integer x).

Definition 1.2. Denote by hk = min{max(H)−min(H) : H is admissible and |H| = k}

It is immediate that

Claim 1.3. For any d1, d2 ∈ N, we have Md1+d2 ≤Md1 + Md2

We use the following simple relation between hk and Md

Claim 1.4. hk ≤ d− 1 iff Md ≥ k. Alternatively, hk ≥ d iff Md ≤ k − 1.

Now we discuss how to derive lower bounds on hk. We start by an example how to derive a
lower bound on h672 from Engelsma’s table. To derive a lower bound for h672 we can use the fact
that h337 = 2270 which means that M2270 ≤ 336 by Claim 1.4. Similarly, M2286 ≤ 335. Using
Claim 1.3, we get M2270+2286 ≤ 335 + 336 and using Claim 1.4 we get h672 ≥ 2270 + 2286 = 4556.

We can generalize this approach. First given Engelsma’s table and Claim 1.4, we derive Md

for all d ≤ 2328, this are the accurate values. Then we use Claim 1.3 (and possibly dynamic
programming) to get upper bounds on Md for values greater than 2329. Then we use Claim 1.4
again to derive lower bounds on hk.

2 Algorithmic Upper Bounds on Md

Let I = [x, x+ d− 1] be an interval of size d, and let P be a set of prime numbers. We will show a
upper bound on the maximal admissible set in this interval. Let A be an optimal such set. And let
{ap}p∈P be the values which A avoids modulo p (if there are several such values pick one of them
arbitrarily). We denote by

B
ap
p = {i ∈ I : i ≡ ap(modp)} .
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Rewriting the RHS we get
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Lower bounding this sum for any subset of primes P0 ⊂ P gives a lower bound for |
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which in turn gives a lower bound for |
⋃
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p |. We define P0 iteratively by the following

algorithm:

1. P0 ← ∅

2. LB ← 0

3. for p ∈ P (ordered, up to d)

(a) LBp ← mina′p∈{0,1,...,p−1}

{
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}
(b) if LBp > 0

i. P0 ← P0 ∪ {p}
ii. LB ← LB + LBp

The same algorithm can be applied when the initial set I is a subset of [x, x+ d− 1]. Thus, we
will do exhaustive search over the values of ap for small primes p (say up to 17). Under any choice
for residue for small p, we will calculate I as the subset that avoids such residue, and will estimate
the lower bound according to the above algorithm. This gives an upper bound on the set of the
admissible set assuming we have the correct value for the small primes residue. Taking a maximum
over all possibilities gives an upper bound for the problem.

3 Results

The next table has upper bounds achieved by the above algorithm with two key parameters: ex-
haustive search prime bound, and the maximal prime in P0 allowed.

d - Interval Length Exhaustive Search max{p ∈ P0} Upper Bound on Md

10000 13 75 1466
13900 17 100 1961
21500 17 100 2928
29500 17 100 3950
38000 17 100 4987
85870 13 150 10715
193000 13 200 22885
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Using Claims 1.3 and 1.4 we derive the following lower bounds on hk:

k0 Engelsma Lower Bound Lower Bound

672 4574 -
1000 6802 -
2000 13620 14082
3000 20434 21884
4000 27248 29746
5000 34068 38048
10719 73094 85878
22949 156614 193330
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